并行-顺序识别算法在诊断任务中的应用

A. Kostoglotov, Vladimir O. Zehcer
{"title":"并行-顺序识别算法在诊断任务中的应用","authors":"A. Kostoglotov, Vladimir O. Zehcer","doi":"10.1109/RusAutoCon52004.2021.9537568","DOIUrl":null,"url":null,"abstract":"Ensuring the reliability of automatic control systems is directly related to solving diagnostic problems that require the identification of current parameter values in the presence of uncertain impacts or changing operating conditions. This determines the high importance of an effective solution to the problem of parametric identification. Currently, there are many alternatives for solving identification problems, one of which is the joint use of classical identification methods and artificial neural networks. The article proposes a method of systems’ synthesis for identifying the dynamic objects’ parameters based on the complex use of artificial neural networks and recurrent algorithms, which is a parallel-sequential information processing procedure. The efficiency of the recurrent identification algorithm using a neural network is shown. The results of the numerical simulation are presented.","PeriodicalId":106150,"journal":{"name":"2021 International Russian Automation Conference (RusAutoCon)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Parallel-Sequential Identification Algorithms in Diagnostic Tasks\",\"authors\":\"A. Kostoglotov, Vladimir O. Zehcer\",\"doi\":\"10.1109/RusAutoCon52004.2021.9537568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring the reliability of automatic control systems is directly related to solving diagnostic problems that require the identification of current parameter values in the presence of uncertain impacts or changing operating conditions. This determines the high importance of an effective solution to the problem of parametric identification. Currently, there are many alternatives for solving identification problems, one of which is the joint use of classical identification methods and artificial neural networks. The article proposes a method of systems’ synthesis for identifying the dynamic objects’ parameters based on the complex use of artificial neural networks and recurrent algorithms, which is a parallel-sequential information processing procedure. The efficiency of the recurrent identification algorithm using a neural network is shown. The results of the numerical simulation are presented.\",\"PeriodicalId\":106150,\"journal\":{\"name\":\"2021 International Russian Automation Conference (RusAutoCon)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Russian Automation Conference (RusAutoCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RusAutoCon52004.2021.9537568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon52004.2021.9537568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确保自动控制系统的可靠性直接关系到解决诊断问题,这些问题需要在不确定的影响或变化的操作条件下识别当前参数值。这就决定了有效解决参数辨识问题的重要性。目前,解决识别问题的方法有很多,其中之一就是经典识别方法与人工神经网络的联合使用。本文提出了一种基于人工神经网络和递归算法复合应用的动态目标参数识别系统综合方法,即并行-顺序信息处理过程。利用神经网络进行循环辨识的有效性得到了验证。给出了数值模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Parallel-Sequential Identification Algorithms in Diagnostic Tasks
Ensuring the reliability of automatic control systems is directly related to solving diagnostic problems that require the identification of current parameter values in the presence of uncertain impacts or changing operating conditions. This determines the high importance of an effective solution to the problem of parametric identification. Currently, there are many alternatives for solving identification problems, one of which is the joint use of classical identification methods and artificial neural networks. The article proposes a method of systems’ synthesis for identifying the dynamic objects’ parameters based on the complex use of artificial neural networks and recurrent algorithms, which is a parallel-sequential information processing procedure. The efficiency of the recurrent identification algorithm using a neural network is shown. The results of the numerical simulation are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信