12导联心电图的深度多标签多实例分类

Yingjing Feng, E. Vigmond
{"title":"12导联心电图的深度多标签多实例分类","authors":"Yingjing Feng, E. Vigmond","doi":"10.22489/CinC.2020.095","DOIUrl":null,"url":null,"abstract":"As part of the PhysioNet/Computing in Cardiology Challenge 2020, we developed an end-to-end deep neural network model based on 1D ResNet and an attention-based multi-instance classification (MIC) mechanism, named as MIC-ResNet, requiring minimal signal preprocessing, for identifying 27 cardiac abnormalities from 12-lead ECG data. Our team, ECGLearner, achieved a challenge validation score of 0.486 and a full test score of 0.001, placing us 33 out of 41 in the official ranking of this year's challenge.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Deep Multi-Label Multi-Instance Classification on 12-Lead ECG\",\"authors\":\"Yingjing Feng, E. Vigmond\",\"doi\":\"10.22489/CinC.2020.095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of the PhysioNet/Computing in Cardiology Challenge 2020, we developed an end-to-end deep neural network model based on 1D ResNet and an attention-based multi-instance classification (MIC) mechanism, named as MIC-ResNet, requiring minimal signal preprocessing, for identifying 27 cardiac abnormalities from 12-lead ECG data. Our team, ECGLearner, achieved a challenge validation score of 0.486 and a full test score of 0.001, placing us 33 out of 41 in the official ranking of this year's challenge.\",\"PeriodicalId\":407282,\"journal\":{\"name\":\"2020 Computing in Cardiology\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Computing in Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2020.095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

作为PhysioNet/Computing in Cardiology Challenge 2020的一部分,我们开发了一个基于1D ResNet的端到端深度神经网络模型和一个基于注意力的多实例分类(MIC)机制,称为MIC-ResNet,需要最少的信号预处理,用于从12导联心电图数据中识别27个心脏异常。我们的团队ECGLearner获得了0.486的挑战验证分数和0.001的完整测试分数,在今年挑战的41个官方排名中排名第33位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Multi-Label Multi-Instance Classification on 12-Lead ECG
As part of the PhysioNet/Computing in Cardiology Challenge 2020, we developed an end-to-end deep neural network model based on 1D ResNet and an attention-based multi-instance classification (MIC) mechanism, named as MIC-ResNet, requiring minimal signal preprocessing, for identifying 27 cardiac abnormalities from 12-lead ECG data. Our team, ECGLearner, achieved a challenge validation score of 0.486 and a full test score of 0.001, placing us 33 out of 41 in the official ranking of this year's challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信