在GPU上求解三对角线系统

B. J. Murphy
{"title":"在GPU上求解三对角线系统","authors":"B. J. Murphy","doi":"10.1109/HiPC.2013.6799117","DOIUrl":null,"url":null,"abstract":"We implement a parallel tridiagonal solver based on cyclic reduction (CR) for a graphics processing unit (GPU). The bane of such solvers is a low computation to communication ratio. With this our main consideration we focus our effort on lowering communication costs. In so doing we accelerate system solving. Further, in the diagonally dominant case computation is decoupled into independent partitions allowing for efficient processing of larger systems.","PeriodicalId":206307,"journal":{"name":"20th Annual International Conference on High Performance Computing","volume":"3 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Solving tridiagonal systems on a GPU\",\"authors\":\"B. J. Murphy\",\"doi\":\"10.1109/HiPC.2013.6799117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We implement a parallel tridiagonal solver based on cyclic reduction (CR) for a graphics processing unit (GPU). The bane of such solvers is a low computation to communication ratio. With this our main consideration we focus our effort on lowering communication costs. In so doing we accelerate system solving. Further, in the diagonally dominant case computation is decoupled into independent partitions allowing for efficient processing of larger systems.\",\"PeriodicalId\":206307,\"journal\":{\"name\":\"20th Annual International Conference on High Performance Computing\",\"volume\":\"3 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th Annual International Conference on High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC.2013.6799117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Annual International Conference on High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2013.6799117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为图形处理单元(GPU)实现了基于循环约简(CR)的并行三对角线求解器。这种求解器的缺点是计算通信比低。这是我们的主要考虑,我们集中精力降低通信成本。这样我们就加快了系统解决的速度。此外,在对角线占主导地位的情况下,计算被解耦到独立的分区,允许对更大的系统进行有效的处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving tridiagonal systems on a GPU
We implement a parallel tridiagonal solver based on cyclic reduction (CR) for a graphics processing unit (GPU). The bane of such solvers is a low computation to communication ratio. With this our main consideration we focus our effort on lowering communication costs. In so doing we accelerate system solving. Further, in the diagonally dominant case computation is decoupled into independent partitions allowing for efficient processing of larger systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信