海报:利用物理层信息检测无线局域网中的客户端移动性

Li Sun, Souvik Sen, Dimitrios Koutsonikolas
{"title":"海报:利用物理层信息检测无线局域网中的客户端移动性","authors":"Li Sun, Souvik Sen, Dimitrios Koutsonikolas","doi":"10.1145/2639108.2642892","DOIUrl":null,"url":null,"abstract":"The continuously increasing number of smartphones and tablets allow the users to access Wireless LANs (WLANs) while undergoing different types of mobility, posing new challenges to wireless protocols. Current history-based WLAN protocols do not work well in mobile settings where wireless conditions change rapidly. Thus, today's WLANs need to be able to determine the type of the client's mobility and employ appropriate strategies in order to sustain high performance. While previous work tried to detect mobility using hints from sensors available in mobile devices, in this work, we demonstrate how different mobility modes can be distinguished by using physical layer information - Channel State Information (CSI) and Time-of-Flight (ToF) - available at commodity APs, with no modifications on the client side. Our testbed experiments show that our mobility classification algorithm achieves more than 92% accuracy in a variety of scenarios. In addition, we demonstrate how fine-grained mobility determination can be exploited to greatly improve performance of client roaming and MIMO beamforming.","PeriodicalId":331897,"journal":{"name":"Proceedings of the 20th annual international conference on Mobile computing and networking","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster: detecting client mobility in WLANs using PHY layer information\",\"authors\":\"Li Sun, Souvik Sen, Dimitrios Koutsonikolas\",\"doi\":\"10.1145/2639108.2642892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuously increasing number of smartphones and tablets allow the users to access Wireless LANs (WLANs) while undergoing different types of mobility, posing new challenges to wireless protocols. Current history-based WLAN protocols do not work well in mobile settings where wireless conditions change rapidly. Thus, today's WLANs need to be able to determine the type of the client's mobility and employ appropriate strategies in order to sustain high performance. While previous work tried to detect mobility using hints from sensors available in mobile devices, in this work, we demonstrate how different mobility modes can be distinguished by using physical layer information - Channel State Information (CSI) and Time-of-Flight (ToF) - available at commodity APs, with no modifications on the client side. Our testbed experiments show that our mobility classification algorithm achieves more than 92% accuracy in a variety of scenarios. In addition, we demonstrate how fine-grained mobility determination can be exploited to greatly improve performance of client roaming and MIMO beamforming.\",\"PeriodicalId\":331897,\"journal\":{\"name\":\"Proceedings of the 20th annual international conference on Mobile computing and networking\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th annual international conference on Mobile computing and networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2639108.2642892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th annual international conference on Mobile computing and networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2639108.2642892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着智能手机和平板电脑数量的不断增加,用户可以在访问无线局域网(wlan)的同时进行不同类型的移动,这对无线协议提出了新的挑战。当前基于历史记录的WLAN协议在无线条件快速变化的移动环境中不能很好地工作。因此,今天的wlan需要能够确定客户端移动性的类型,并采用适当的策略,以维持高性能。虽然之前的工作试图使用来自移动设备中可用的传感器的提示来检测移动性,但在这项工作中,我们展示了如何通过使用商品ap上可用的物理层信息-通道状态信息(CSI)和飞行时间(ToF)来区分不同的移动性模式,而无需在客户端进行修改。我们的测试平台实验表明,我们的移动性分类算法在各种场景下达到了92%以上的准确率。此外,我们还演示了如何利用细粒度的移动性确定来大大提高客户端漫游和MIMO波束形成的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: detecting client mobility in WLANs using PHY layer information
The continuously increasing number of smartphones and tablets allow the users to access Wireless LANs (WLANs) while undergoing different types of mobility, posing new challenges to wireless protocols. Current history-based WLAN protocols do not work well in mobile settings where wireless conditions change rapidly. Thus, today's WLANs need to be able to determine the type of the client's mobility and employ appropriate strategies in order to sustain high performance. While previous work tried to detect mobility using hints from sensors available in mobile devices, in this work, we demonstrate how different mobility modes can be distinguished by using physical layer information - Channel State Information (CSI) and Time-of-Flight (ToF) - available at commodity APs, with no modifications on the client side. Our testbed experiments show that our mobility classification algorithm achieves more than 92% accuracy in a variety of scenarios. In addition, we demonstrate how fine-grained mobility determination can be exploited to greatly improve performance of client roaming and MIMO beamforming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信