基于信号时序逻辑的电子商务排名信号分析

Tommaso Dreossi, Giorgio Ballardin, Parth Gupta, J. Bakus, Yu-Hsiang Lin, Vamsi Salaka
{"title":"基于信号时序逻辑的电子商务排名信号分析","authors":"Tommaso Dreossi, Giorgio Ballardin, Parth Gupta, J. Bakus, Yu-Hsiang Lin, Vamsi Salaka","doi":"10.4204/EPTCS.331.3","DOIUrl":null,"url":null,"abstract":"The timed position of documents retrieved by learning to rank models can be seen as signals. Signals carry useful information such as drop or rise of documents over time or user behaviors. In this work, we propose to use the logic formalism called Signal Temporal Logic (STL) to characterize document behaviors in ranking accordingly to the specified formulas. Our analysis shows that interesting document behaviors can be easily formalized and detected thanks to STL formulas. We validate our idea on a dataset of 100K product signals. Through the presented framework, we uncover interesting patterns, such as cold start, warm start, spikes, and inspect how they affect our learning to ranks models.","PeriodicalId":313825,"journal":{"name":"International Workshop on Symbolic-Numeric methods for Reasoning about CPS and IoT","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of E-commerce Ranking Signals via Signal Temporal Logic\",\"authors\":\"Tommaso Dreossi, Giorgio Ballardin, Parth Gupta, J. Bakus, Yu-Hsiang Lin, Vamsi Salaka\",\"doi\":\"10.4204/EPTCS.331.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The timed position of documents retrieved by learning to rank models can be seen as signals. Signals carry useful information such as drop or rise of documents over time or user behaviors. In this work, we propose to use the logic formalism called Signal Temporal Logic (STL) to characterize document behaviors in ranking accordingly to the specified formulas. Our analysis shows that interesting document behaviors can be easily formalized and detected thanks to STL formulas. We validate our idea on a dataset of 100K product signals. Through the presented framework, we uncover interesting patterns, such as cold start, warm start, spikes, and inspect how they affect our learning to ranks models.\",\"PeriodicalId\":313825,\"journal\":{\"name\":\"International Workshop on Symbolic-Numeric methods for Reasoning about CPS and IoT\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Symbolic-Numeric methods for Reasoning about CPS and IoT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.331.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Symbolic-Numeric methods for Reasoning about CPS and IoT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.331.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过学习排序模型检索到的文档的定时位置可以看作是信号。信号携带有用的信息,如文档随时间或用户行为的下降或上升。在这项工作中,我们建议使用称为信号时间逻辑(STL)的逻辑形式化来描述文档行为,并根据指定的公式进行排序。我们的分析表明,由于使用STL公式,有趣的文档行为可以很容易地形式化和检测。我们在100K个产品信号的数据集上验证了我们的想法。通过提出的框架,我们发现了有趣的模式,如冷启动、热启动、尖峰,并检查它们如何影响我们对模型的学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of E-commerce Ranking Signals via Signal Temporal Logic
The timed position of documents retrieved by learning to rank models can be seen as signals. Signals carry useful information such as drop or rise of documents over time or user behaviors. In this work, we propose to use the logic formalism called Signal Temporal Logic (STL) to characterize document behaviors in ranking accordingly to the specified formulas. Our analysis shows that interesting document behaviors can be easily formalized and detected thanks to STL formulas. We validate our idea on a dataset of 100K product signals. Through the presented framework, we uncover interesting patterns, such as cold start, warm start, spikes, and inspect how they affect our learning to ranks models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信