旋转不变矩形矩阵的最优去噪

Emanuele Troiani, Vittorio Erba, F. Krzakala, Antoine Maillard, Lenka Zdeborov'a
{"title":"旋转不变矩形矩阵的最优去噪","authors":"Emanuele Troiani, Vittorio Erba, F. Krzakala, Antoine Maillard, Lenka Zdeborov'a","doi":"10.48550/arXiv.2203.07752","DOIUrl":null,"url":null,"abstract":"In this manuscript we consider denoising of large rectangular matrices: given a noisy observation of a signal matrix, what is the best way of recovering the signal matrix itself? For Gaussian noise and rotationally-invariant signal priors, we completely characterize the optimal denoiser and its performance in the high-dimensional limit, in which the size of the signal matrix goes to infinity with fixed aspects ratio, and under the Bayes optimal setting, that is when the statistician knows how the signal and the observations were generated. Our results generalise previous works that considered only symmetric matrices to the more general case of non-symmetric and rectangular ones. We explore analytically and numerically a particular choice of factorized signal prior that models cross-covariance matrices and the matrix factorization problem. As a byproduct of our analysis, we provide an explicit asymptotic evaluation of the rectangular Harish-Chandra-Itzykson-Zuber integral in a special case.","PeriodicalId":189279,"journal":{"name":"Mathematical and Scientific Machine Learning","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimal denoising of rotationally invariant rectangular matrices\",\"authors\":\"Emanuele Troiani, Vittorio Erba, F. Krzakala, Antoine Maillard, Lenka Zdeborov'a\",\"doi\":\"10.48550/arXiv.2203.07752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript we consider denoising of large rectangular matrices: given a noisy observation of a signal matrix, what is the best way of recovering the signal matrix itself? For Gaussian noise and rotationally-invariant signal priors, we completely characterize the optimal denoiser and its performance in the high-dimensional limit, in which the size of the signal matrix goes to infinity with fixed aspects ratio, and under the Bayes optimal setting, that is when the statistician knows how the signal and the observations were generated. Our results generalise previous works that considered only symmetric matrices to the more general case of non-symmetric and rectangular ones. We explore analytically and numerically a particular choice of factorized signal prior that models cross-covariance matrices and the matrix factorization problem. As a byproduct of our analysis, we provide an explicit asymptotic evaluation of the rectangular Harish-Chandra-Itzykson-Zuber integral in a special case.\",\"PeriodicalId\":189279,\"journal\":{\"name\":\"Mathematical and Scientific Machine Learning\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Scientific Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.07752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Scientific Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.07752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们考虑了大矩形矩阵的去噪:给定信号矩阵的噪声观测,恢复信号矩阵本身的最佳方法是什么?对于高斯噪声和旋转不变信号先验,我们在高维极限下,即信号矩阵的大小以固定的方面比趋于无穷,以及在贝叶斯最优设置下,即统计学家知道信号和观测值是如何产生的情况下,完全表征了最优去噪方法及其性能。我们的结果将以前只考虑对称矩阵的工作推广到更一般的非对称和矩形矩阵的情况。我们用分析和数值方法探讨了一种特殊的选择,即交叉协方差矩阵模型和矩阵分解问题。作为我们分析的副产品,我们给出了在一种特殊情况下矩形Harish-Chandra-Itzykson-Zuber积分的显式渐近求值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal denoising of rotationally invariant rectangular matrices
In this manuscript we consider denoising of large rectangular matrices: given a noisy observation of a signal matrix, what is the best way of recovering the signal matrix itself? For Gaussian noise and rotationally-invariant signal priors, we completely characterize the optimal denoiser and its performance in the high-dimensional limit, in which the size of the signal matrix goes to infinity with fixed aspects ratio, and under the Bayes optimal setting, that is when the statistician knows how the signal and the observations were generated. Our results generalise previous works that considered only symmetric matrices to the more general case of non-symmetric and rectangular ones. We explore analytically and numerically a particular choice of factorized signal prior that models cross-covariance matrices and the matrix factorization problem. As a byproduct of our analysis, we provide an explicit asymptotic evaluation of the rectangular Harish-Chandra-Itzykson-Zuber integral in a special case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信