在线课程中基于面部表情和头部运动的学习者睡意检测

Shogo Terai, Shizuka Shirai, Mehrasa Alizadeh, Ryosuke Kawamura, Noriko Takemura, Yuuki Uranishi, H. Takemura, H. Nagahara
{"title":"在线课程中基于面部表情和头部运动的学习者睡意检测","authors":"Shogo Terai, Shizuka Shirai, Mehrasa Alizadeh, Ryosuke Kawamura, Noriko Takemura, Yuuki Uranishi, H. Takemura, H. Nagahara","doi":"10.1145/3379336.3381500","DOIUrl":null,"url":null,"abstract":"Drowsiness is a major factor that hinders learning. To improve learning efficiency, it is important to understand students' physical status such as wakefulness during online coursework. In this study, we have proposed a drowsiness estimation method based on learners' head and facial movements while viewing video lectures. To examine the effectiveness of head and facial movements in drowsiness estimation, we collected learner video data recorded during e-learning and applied a deep learning approach under the following conditions: (a) using only facial movement data, (b) using only head movement data, and (c) using both facial and head movement data. We achieved an average F1-macro score of 0.74 in personalized models for detecting learner drowsiness using both facial and head movement data.","PeriodicalId":335081,"journal":{"name":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Detecting Learner Drowsiness Based on Facial Expressions and Head Movements in Online Courses\",\"authors\":\"Shogo Terai, Shizuka Shirai, Mehrasa Alizadeh, Ryosuke Kawamura, Noriko Takemura, Yuuki Uranishi, H. Takemura, H. Nagahara\",\"doi\":\"10.1145/3379336.3381500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drowsiness is a major factor that hinders learning. To improve learning efficiency, it is important to understand students' physical status such as wakefulness during online coursework. In this study, we have proposed a drowsiness estimation method based on learners' head and facial movements while viewing video lectures. To examine the effectiveness of head and facial movements in drowsiness estimation, we collected learner video data recorded during e-learning and applied a deep learning approach under the following conditions: (a) using only facial movement data, (b) using only head movement data, and (c) using both facial and head movement data. We achieved an average F1-macro score of 0.74 in personalized models for detecting learner drowsiness using both facial and head movement data.\",\"PeriodicalId\":335081,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3379336.3381500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379336.3381500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

困倦是阻碍学习的一个主要因素。为了提高学习效率,了解学生的身体状况是很重要的,比如在在线课程中是否清醒。在本研究中,我们提出了一种基于学习者观看视频讲座时头部和面部运动的困倦估计方法。为了检验头部和面部运动在睡意估计中的有效性,我们收集了在电子学习期间记录的学习者视频数据,并在以下条件下应用了深度学习方法:(a)仅使用面部运动数据,(b)仅使用头部运动数据,(c)同时使用面部和头部运动数据。在使用面部和头部运动数据检测学习者困倦的个性化模型中,我们实现了平均F1-macro得分为0.74。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Learner Drowsiness Based on Facial Expressions and Head Movements in Online Courses
Drowsiness is a major factor that hinders learning. To improve learning efficiency, it is important to understand students' physical status such as wakefulness during online coursework. In this study, we have proposed a drowsiness estimation method based on learners' head and facial movements while viewing video lectures. To examine the effectiveness of head and facial movements in drowsiness estimation, we collected learner video data recorded during e-learning and applied a deep learning approach under the following conditions: (a) using only facial movement data, (b) using only head movement data, and (c) using both facial and head movement data. We achieved an average F1-macro score of 0.74 in personalized models for detecting learner drowsiness using both facial and head movement data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信