{"title":"弯曲动量空间等效于线性和二次广义不确定性原理","authors":"Fabian Wagner","doi":"10.1142/9789811275388_0062","DOIUrl":null,"url":null,"abstract":"In this work, we deepen the correspondence between Generalized Uncertainty Principles (GUPs) and quantum dynamics on curved momentum space. In particular, we investigate the linear and quadratic GUP. Similarly to earlier work, the resulting curvature tensor in the dual theory is proportional to the coordinate non-commutativity of the original formulation.","PeriodicalId":104099,"journal":{"name":"CPT and Lorentz Symmetry","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Curved Momentum-Space Equivalent to the Linear and Quadratic Generalized Uncertainty Principle\",\"authors\":\"Fabian Wagner\",\"doi\":\"10.1142/9789811275388_0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we deepen the correspondence between Generalized Uncertainty Principles (GUPs) and quantum dynamics on curved momentum space. In particular, we investigate the linear and quadratic GUP. Similarly to earlier work, the resulting curvature tensor in the dual theory is proportional to the coordinate non-commutativity of the original formulation.\",\"PeriodicalId\":104099,\"journal\":{\"name\":\"CPT and Lorentz Symmetry\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT and Lorentz Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811275388_0062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT and Lorentz Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811275388_0062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Curved Momentum-Space Equivalent to the Linear and Quadratic Generalized Uncertainty Principle
In this work, we deepen the correspondence between Generalized Uncertainty Principles (GUPs) and quantum dynamics on curved momentum space. In particular, we investigate the linear and quadratic GUP. Similarly to earlier work, the resulting curvature tensor in the dual theory is proportional to the coordinate non-commutativity of the original formulation.