弯曲动量空间等效于线性和二次广义不确定性原理

Fabian Wagner
{"title":"弯曲动量空间等效于线性和二次广义不确定性原理","authors":"Fabian Wagner","doi":"10.1142/9789811275388_0062","DOIUrl":null,"url":null,"abstract":"In this work, we deepen the correspondence between Generalized Uncertainty Principles (GUPs) and quantum dynamics on curved momentum space. In particular, we investigate the linear and quadratic GUP. Similarly to earlier work, the resulting curvature tensor in the dual theory is proportional to the coordinate non-commutativity of the original formulation.","PeriodicalId":104099,"journal":{"name":"CPT and Lorentz Symmetry","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Curved Momentum-Space Equivalent to the Linear and Quadratic Generalized Uncertainty Principle\",\"authors\":\"Fabian Wagner\",\"doi\":\"10.1142/9789811275388_0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we deepen the correspondence between Generalized Uncertainty Principles (GUPs) and quantum dynamics on curved momentum space. In particular, we investigate the linear and quadratic GUP. Similarly to earlier work, the resulting curvature tensor in the dual theory is proportional to the coordinate non-commutativity of the original formulation.\",\"PeriodicalId\":104099,\"journal\":{\"name\":\"CPT and Lorentz Symmetry\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT and Lorentz Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811275388_0062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT and Lorentz Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811275388_0062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们深化了广义不确定性原理(GUPs)与弯曲动量空间上量子动力学的对应关系。特别地,我们研究了线性和二次GUP。与早期的工作类似,对偶理论中得到的曲率张量与原始公式的坐标非交换性成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curved Momentum-Space Equivalent to the Linear and Quadratic Generalized Uncertainty Principle
In this work, we deepen the correspondence between Generalized Uncertainty Principles (GUPs) and quantum dynamics on curved momentum space. In particular, we investigate the linear and quadratic GUP. Similarly to earlier work, the resulting curvature tensor in the dual theory is proportional to the coordinate non-commutativity of the original formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信