用于生物监测的疾病爆发检测和跟踪:数据融合方法

J. Blind, S. Das
{"title":"用于生物监测的疾病爆发检测和跟踪:数据融合方法","authors":"J. Blind, S. Das","doi":"10.1109/ICIF.2007.4408073","DOIUrl":null,"url":null,"abstract":"In this paper we present an application that utilizes a novel two-level fusion architecture to detect and track disease outbreaks across public health system databases. In the first fusion level, collected data is used to detect and track indicative bio-events using latent semantic analysis and unsupervised clustering. In the second fusion level, clusters produced via the first are used to feed dynamic Bayesian networks which assess outbreak type and state. We train and test our system using data from a 200K+ free-text emergency department (ED) chief complaint record set.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disease outbreak detection and tracking for biosurveillance: a data fusion approach\",\"authors\":\"J. Blind, S. Das\",\"doi\":\"10.1109/ICIF.2007.4408073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an application that utilizes a novel two-level fusion architecture to detect and track disease outbreaks across public health system databases. In the first fusion level, collected data is used to detect and track indicative bio-events using latent semantic analysis and unsupervised clustering. In the second fusion level, clusters produced via the first are used to feed dynamic Bayesian networks which assess outbreak type and state. We train and test our system using data from a 200K+ free-text emergency department (ED) chief complaint record set.\",\"PeriodicalId\":298941,\"journal\":{\"name\":\"2007 10th International Conference on Information Fusion\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2007.4408073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个应用程序,利用一种新的两级融合架构来检测和跟踪公共卫生系统数据库中的疾病爆发。在第一级融合中,收集到的数据使用潜在语义分析和无监督聚类来检测和跟踪指示性生物事件。在第二个融合级别中,通过第一个融合级别产生的集群用于馈送评估爆发类型和状态的动态贝叶斯网络。我们训练和测试我们的系统使用数据从200K+自由文本急诊科(ED)主诉记录集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disease outbreak detection and tracking for biosurveillance: a data fusion approach
In this paper we present an application that utilizes a novel two-level fusion architecture to detect and track disease outbreaks across public health system databases. In the first fusion level, collected data is used to detect and track indicative bio-events using latent semantic analysis and unsupervised clustering. In the second fusion level, clusters produced via the first are used to feed dynamic Bayesian networks which assess outbreak type and state. We train and test our system using data from a 200K+ free-text emergency department (ED) chief complaint record set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信