使用高级合成设计可扩展的FPGA架构

J. D. F. Licht, Michaela Blott, T. Hoefler
{"title":"使用高级合成设计可扩展的FPGA架构","authors":"J. D. F. Licht, Michaela Blott, T. Hoefler","doi":"10.1145/3178487.3178527","DOIUrl":null,"url":null,"abstract":"Massive spatial parallelism at low energy gives FPGAs the potential to be core components in large scale high performance computing (HPC) systems. In this paper we present four major design steps that harness high-level synthesis (HLS) to implement scalable spatial FPGA algorithms. To aid productivity, we introduce the open source library hlslib to complement HLS. We evaluate kernels designed with our approach on an FPGA accelerator board, demonstrating high performance and board utilization with enhanced programmer productivity. By following our guidelines, programmers can use HLS to develop efficient parallel algorithms for FPGA, scaling their implementations with increased resources on future hardware.","PeriodicalId":193776,"journal":{"name":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Designing scalable FPGA architectures using high-level synthesis\",\"authors\":\"J. D. F. Licht, Michaela Blott, T. Hoefler\",\"doi\":\"10.1145/3178487.3178527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive spatial parallelism at low energy gives FPGAs the potential to be core components in large scale high performance computing (HPC) systems. In this paper we present four major design steps that harness high-level synthesis (HLS) to implement scalable spatial FPGA algorithms. To aid productivity, we introduce the open source library hlslib to complement HLS. We evaluate kernels designed with our approach on an FPGA accelerator board, demonstrating high performance and board utilization with enhanced programmer productivity. By following our guidelines, programmers can use HLS to develop efficient parallel algorithms for FPGA, scaling their implementations with increased resources on future hardware.\",\"PeriodicalId\":193776,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178487.3178527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178487.3178527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

低能量下的大规模空间并行性使fpga有可能成为大规模高性能计算(HPC)系统的核心组件。在本文中,我们提出了利用高级合成(HLS)来实现可扩展空间FPGA算法的四个主要设计步骤。为了提高工作效率,我们引入了开源库hlslib来补充HLS。我们在FPGA加速板上评估了用我们的方法设计的内核,展示了高性能和板利用率,提高了程序员的工作效率。通过遵循我们的指导方针,程序员可以使用HLS为FPGA开发高效的并行算法,并在未来硬件上增加资源来扩展其实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing scalable FPGA architectures using high-level synthesis
Massive spatial parallelism at low energy gives FPGAs the potential to be core components in large scale high performance computing (HPC) systems. In this paper we present four major design steps that harness high-level synthesis (HLS) to implement scalable spatial FPGA algorithms. To aid productivity, we introduce the open source library hlslib to complement HLS. We evaluate kernels designed with our approach on an FPGA accelerator board, demonstrating high performance and board utilization with enhanced programmer productivity. By following our guidelines, programmers can use HLS to develop efficient parallel algorithms for FPGA, scaling their implementations with increased resources on future hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信