{"title":"用Microsoft LUIS训练聊天机器人:意图不平衡对预测精度的影响","authors":"Elayne Ruane, Robert Young, Anthony Ventresque","doi":"10.1145/3379336.3381494","DOIUrl":null,"url":null,"abstract":"Microsoft LUIS is a natural language understanding service used to train Chatbots. Imbalance in the utterance training set may cause the LUIS model to predict the wrong intent for a user's query. We discuss this problem and the training recommendations from Microsoft to improve prediction accuracy with LUIS. We perform batch testing on three training sets created from two existing datasets to explore the effectiveness of these recommendations.","PeriodicalId":335081,"journal":{"name":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Training a Chatbot with Microsoft LUIS: Effect of Intent Imbalance on Prediction Accuracy\",\"authors\":\"Elayne Ruane, Robert Young, Anthony Ventresque\",\"doi\":\"10.1145/3379336.3381494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microsoft LUIS is a natural language understanding service used to train Chatbots. Imbalance in the utterance training set may cause the LUIS model to predict the wrong intent for a user's query. We discuss this problem and the training recommendations from Microsoft to improve prediction accuracy with LUIS. We perform batch testing on three training sets created from two existing datasets to explore the effectiveness of these recommendations.\",\"PeriodicalId\":335081,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3379336.3381494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379336.3381494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Training a Chatbot with Microsoft LUIS: Effect of Intent Imbalance on Prediction Accuracy
Microsoft LUIS is a natural language understanding service used to train Chatbots. Imbalance in the utterance training set may cause the LUIS model to predict the wrong intent for a user's query. We discuss this problem and the training recommendations from Microsoft to improve prediction accuracy with LUIS. We perform batch testing on three training sets created from two existing datasets to explore the effectiveness of these recommendations.