Hazem A. Taha, Mohamed K. Othman, N. E. Abbas, Yara K. Sayed, H. Ammar, R. Shalaby
{"title":"非线性增强型空气悬浮系统的NARX神经网络建模","authors":"Hazem A. Taha, Mohamed K. Othman, N. E. Abbas, Yara K. Sayed, H. Ammar, R. Shalaby","doi":"10.1109/NILES53778.2021.9600486","DOIUrl":null,"url":null,"abstract":"the proposed paper aims to design and model an air levitation system, which is a highly nonlinear system because of its fast dynamics and low damping. The system is trained using a Nonlinear Autoregressive model with exogenous input (NARX model). An enhanced height measurement system, modified setup, and several training techniques have been used to overcome the restrictions that the non-linearity of the system imposes in the literature. The system mathematical model has been illustrated, followed by an identified model using NARX model trained on several input-output data from the physical setup, which led to perfectly define the unknown parameters of the system. The data is collected using a closed-loop identification implemented using a Python-Arduino-linked GUI vision system, and the results were remarkable when compared to the literature setup. The results verify that NARX neural network, with suitable training procedures, could successfully model a real air levitation system.","PeriodicalId":249153,"journal":{"name":"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Nonlinear Enhanced Air Levitation System using NARX Neural Networks\",\"authors\":\"Hazem A. Taha, Mohamed K. Othman, N. E. Abbas, Yara K. Sayed, H. Ammar, R. Shalaby\",\"doi\":\"10.1109/NILES53778.2021.9600486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the proposed paper aims to design and model an air levitation system, which is a highly nonlinear system because of its fast dynamics and low damping. The system is trained using a Nonlinear Autoregressive model with exogenous input (NARX model). An enhanced height measurement system, modified setup, and several training techniques have been used to overcome the restrictions that the non-linearity of the system imposes in the literature. The system mathematical model has been illustrated, followed by an identified model using NARX model trained on several input-output data from the physical setup, which led to perfectly define the unknown parameters of the system. The data is collected using a closed-loop identification implemented using a Python-Arduino-linked GUI vision system, and the results were remarkable when compared to the literature setup. The results verify that NARX neural network, with suitable training procedures, could successfully model a real air levitation system.\",\"PeriodicalId\":249153,\"journal\":{\"name\":\"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NILES53778.2021.9600486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES53778.2021.9600486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of Nonlinear Enhanced Air Levitation System using NARX Neural Networks
the proposed paper aims to design and model an air levitation system, which is a highly nonlinear system because of its fast dynamics and low damping. The system is trained using a Nonlinear Autoregressive model with exogenous input (NARX model). An enhanced height measurement system, modified setup, and several training techniques have been used to overcome the restrictions that the non-linearity of the system imposes in the literature. The system mathematical model has been illustrated, followed by an identified model using NARX model trained on several input-output data from the physical setup, which led to perfectly define the unknown parameters of the system. The data is collected using a closed-loop identification implemented using a Python-Arduino-linked GUI vision system, and the results were remarkable when compared to the literature setup. The results verify that NARX neural network, with suitable training procedures, could successfully model a real air levitation system.