PBPI:贝叶斯系统发育推理的高性能实现

Xizhou Feng, K. Cameron, D. Buell
{"title":"PBPI:贝叶斯系统发育推理的高性能实现","authors":"Xizhou Feng, K. Cameron, D. Buell","doi":"10.1145/1188455.1188535","DOIUrl":null,"url":null,"abstract":"This paper describes the implementation and performance of PBPI, a parallel implementation of Bayesian phylogenetic inference method for DNA sequence data. By combining the Markov chain Monte Carlo (MCMC) method with likelihood-based assessment of phylogenies, Bayesian phylogenetic inferences can incorporate complex statistic models into the process of phylogenetic tree estimation. However, Bayesian analyses are extremely computationally expensive. PBPI uses algorithmic improvements and parallel processing to achieve significant performance improvement over comparable Bayesian phylogenetic inference programs. We evaluated the performance and accuracy of PBPI using a simulated dataset on System X, a terascale supercomputer at Virginia Tech. Our results show that PBPI identifies equivalent tree estimates 1424 times faster on 256 processors than a widely-used, best-available (albeit sequential), Bayesian phylogenetic inference program. PBPI also achieves linear speedup with the number of processors for large problem sizes. Most importantly, the PBPI framework enables Bayesian phylogenetic analysis of large datasets previously impracticable","PeriodicalId":333909,"journal":{"name":"ACM/IEEE SC 2006 Conference (SC'06)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"PBPI: a High Performance Implementation of Bayesian Phylogenetic Inference\",\"authors\":\"Xizhou Feng, K. Cameron, D. Buell\",\"doi\":\"10.1145/1188455.1188535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the implementation and performance of PBPI, a parallel implementation of Bayesian phylogenetic inference method for DNA sequence data. By combining the Markov chain Monte Carlo (MCMC) method with likelihood-based assessment of phylogenies, Bayesian phylogenetic inferences can incorporate complex statistic models into the process of phylogenetic tree estimation. However, Bayesian analyses are extremely computationally expensive. PBPI uses algorithmic improvements and parallel processing to achieve significant performance improvement over comparable Bayesian phylogenetic inference programs. We evaluated the performance and accuracy of PBPI using a simulated dataset on System X, a terascale supercomputer at Virginia Tech. Our results show that PBPI identifies equivalent tree estimates 1424 times faster on 256 processors than a widely-used, best-available (albeit sequential), Bayesian phylogenetic inference program. PBPI also achieves linear speedup with the number of processors for large problem sizes. Most importantly, the PBPI framework enables Bayesian phylogenetic analysis of large datasets previously impracticable\",\"PeriodicalId\":333909,\"journal\":{\"name\":\"ACM/IEEE SC 2006 Conference (SC'06)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2006 Conference (SC'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1188455.1188535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2006 Conference (SC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1188455.1188535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文描述了PBPI的实现和性能,PBPI是一种用于DNA序列数据的贝叶斯系统发育推断方法的并行实现。将马尔可夫链蒙特卡罗(MCMC)方法与基于似然的系统发育评估相结合,贝叶斯系统发育推断可以将复杂的统计模型纳入系统发育树估计过程中。然而,贝叶斯分析在计算上非常昂贵。PBPI使用算法改进和并行处理来实现比可比贝叶斯系统发育推断程序显著的性能改进。我们使用弗吉尼亚理工大学的超级计算机System X上的模拟数据集评估了PBPI的性能和准确性。我们的结果表明,PBPI在256个处理器上识别等效树估计的速度比广泛使用的最佳可用性(尽管是顺序的)贝叶斯系统发育推断程序快1424倍。对于大型问题,PBPI还可以随着处理器数量的增加而实现线性加速。最重要的是,PBPI框架使以前无法实现的大型数据集的贝叶斯系统发育分析成为可能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PBPI: a High Performance Implementation of Bayesian Phylogenetic Inference
This paper describes the implementation and performance of PBPI, a parallel implementation of Bayesian phylogenetic inference method for DNA sequence data. By combining the Markov chain Monte Carlo (MCMC) method with likelihood-based assessment of phylogenies, Bayesian phylogenetic inferences can incorporate complex statistic models into the process of phylogenetic tree estimation. However, Bayesian analyses are extremely computationally expensive. PBPI uses algorithmic improvements and parallel processing to achieve significant performance improvement over comparable Bayesian phylogenetic inference programs. We evaluated the performance and accuracy of PBPI using a simulated dataset on System X, a terascale supercomputer at Virginia Tech. Our results show that PBPI identifies equivalent tree estimates 1424 times faster on 256 processors than a widely-used, best-available (albeit sequential), Bayesian phylogenetic inference program. PBPI also achieves linear speedup with the number of processors for large problem sizes. Most importantly, the PBPI framework enables Bayesian phylogenetic analysis of large datasets previously impracticable
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信