基于简单启发式的可扩展活动检测系统架构

Rico Thomanek, Christian Roschke, Benny Platte, R. Manthey, Tony Rolletschke, Manuel Heinzig, M. Vodel, Frank Zimmer, Maximilian Eibl
{"title":"基于简单启发式的可扩展活动检测系统架构","authors":"Rico Thomanek, Christian Roschke, Benny Platte, R. Manthey, Tony Rolletschke, Manuel Heinzig, M. Vodel, Frank Zimmer, Maximilian Eibl","doi":"10.1109/WACVW.2019.00012","DOIUrl":null,"url":null,"abstract":"The analysis of video footage regarding the identification of persons at defined locations or the detection of complex activities is still a challenging process. Nowadays, various (semi-)automated systems can be used to overcome different parts of these challenges. Object detection and their classification reach even higher detection rates when making use of the latest cutting-edge convolutional neural network frameworks. Integrated into a scalable infrastructure as a service data base system, we employ the combination of such networks by using the Detectron framework within Docker containers with case-specific engineered tracking and motion pattern heuristics in order to detect several activities with comparatively low and distributed computing efforts and reasonable results.","PeriodicalId":254512,"journal":{"name":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Scalable System Architecture for Activity Detection with Simple Heuristics\",\"authors\":\"Rico Thomanek, Christian Roschke, Benny Platte, R. Manthey, Tony Rolletschke, Manuel Heinzig, M. Vodel, Frank Zimmer, Maximilian Eibl\",\"doi\":\"10.1109/WACVW.2019.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of video footage regarding the identification of persons at defined locations or the detection of complex activities is still a challenging process. Nowadays, various (semi-)automated systems can be used to overcome different parts of these challenges. Object detection and their classification reach even higher detection rates when making use of the latest cutting-edge convolutional neural network frameworks. Integrated into a scalable infrastructure as a service data base system, we employ the combination of such networks by using the Detectron framework within Docker containers with case-specific engineered tracking and motion pattern heuristics in order to detect several activities with comparatively low and distributed computing efforts and reasonable results.\",\"PeriodicalId\":254512,\"journal\":{\"name\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW.2019.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2019.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

分析关于在确定地点识别人员或探测复杂活动的录像片段仍然是一个具有挑战性的过程。如今,各种(半)自动化系统可以用来克服这些挑战的不同部分。当使用最新最前沿的卷积神经网络框架时,目标检测及其分类达到更高的检测率。集成到可扩展的基础设施即服务数据库系统中,我们通过在Docker容器中使用Detectron框架以及特定案例的工程跟踪和运动模式启发式来结合这些网络,以便以相对较低的分布式计算工作量和合理的结果检测多个活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Scalable System Architecture for Activity Detection with Simple Heuristics
The analysis of video footage regarding the identification of persons at defined locations or the detection of complex activities is still a challenging process. Nowadays, various (semi-)automated systems can be used to overcome different parts of these challenges. Object detection and their classification reach even higher detection rates when making use of the latest cutting-edge convolutional neural network frameworks. Integrated into a scalable infrastructure as a service data base system, we employ the combination of such networks by using the Detectron framework within Docker containers with case-specific engineered tracking and motion pattern heuristics in order to detect several activities with comparatively low and distributed computing efforts and reasonable results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信