二进制音频指纹扩展哈希和位置敏感哈希的比较

K. Moravec, I. Cox
{"title":"二进制音频指纹扩展哈希和位置敏感哈希的比较","authors":"K. Moravec, I. Cox","doi":"10.1145/1991996.1992027","DOIUrl":null,"url":null,"abstract":"Hash tables have been proposed for the indexing of high-dimensional binary vectors, specifically for the identification of media by fingerprints. In this paper we develop a new model to predict the performance of a hash-based method (Fingerprint Hashing) under varying levels of noise. We show that by the adjustment of two parameters, robustness to a higher level of noise is achieved. We extend Fingerprint Hashing to a multi-table range search (Extended Fingerprint Hashing) and show this approach also increases robustness to noise. We then show the relationship between Extended Fingerprint Hashing and Locality Sensitive Hashing and investigate design choices for dealing with higher noise levels. If index size must be held constant, the Extended Fingerprint Hash is a superior method. We also show that to achieve similar performance at a given level of noise a Locality Sensitive Hash requires nearly a six-fold increase in index size which is likely to be impractical for many applications.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A comparison of extended fingerprint hashing and locality sensitive hashing for binary audio fingerprints\",\"authors\":\"K. Moravec, I. Cox\",\"doi\":\"10.1145/1991996.1992027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hash tables have been proposed for the indexing of high-dimensional binary vectors, specifically for the identification of media by fingerprints. In this paper we develop a new model to predict the performance of a hash-based method (Fingerprint Hashing) under varying levels of noise. We show that by the adjustment of two parameters, robustness to a higher level of noise is achieved. We extend Fingerprint Hashing to a multi-table range search (Extended Fingerprint Hashing) and show this approach also increases robustness to noise. We then show the relationship between Extended Fingerprint Hashing and Locality Sensitive Hashing and investigate design choices for dealing with higher noise levels. If index size must be held constant, the Extended Fingerprint Hash is a superior method. We also show that to achieve similar performance at a given level of noise a Locality Sensitive Hash requires nearly a six-fold increase in index size which is likely to be impractical for many applications.\",\"PeriodicalId\":390933,\"journal\":{\"name\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1991996.1992027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

哈希表已被提议用于高维二进制向量的索引,特别是用于通过指纹识别媒体。在本文中,我们开发了一个新的模型来预测基于哈希的方法(指纹哈希)在不同程度的噪声下的性能。我们表明,通过调整两个参数,实现了对更高水平噪声的鲁棒性。我们将指纹哈希扩展到多表范围搜索(扩展指纹哈希),并表明这种方法也增加了对噪声的鲁棒性。然后,我们展示了扩展指纹哈希和位置敏感哈希之间的关系,并研究了处理更高噪声水平的设计选择。如果索引大小必须保持不变,则扩展指纹散列是一种更好的方法。我们还表明,要在给定噪声水平下实现类似的性能,局部性敏感散列需要将索引大小增加近六倍,这对于许多应用程序来说可能是不切实际的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of extended fingerprint hashing and locality sensitive hashing for binary audio fingerprints
Hash tables have been proposed for the indexing of high-dimensional binary vectors, specifically for the identification of media by fingerprints. In this paper we develop a new model to predict the performance of a hash-based method (Fingerprint Hashing) under varying levels of noise. We show that by the adjustment of two parameters, robustness to a higher level of noise is achieved. We extend Fingerprint Hashing to a multi-table range search (Extended Fingerprint Hashing) and show this approach also increases robustness to noise. We then show the relationship between Extended Fingerprint Hashing and Locality Sensitive Hashing and investigate design choices for dealing with higher noise levels. If index size must be held constant, the Extended Fingerprint Hash is a superior method. We also show that to achieve similar performance at a given level of noise a Locality Sensitive Hash requires nearly a six-fold increase in index size which is likely to be impractical for many applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信