用非线性混合效应模型建模树径生长

Lichun Jiang, Fengri Li
{"title":"用非线性混合效应模型建模树径生长","authors":"Lichun Jiang, Fengri Li","doi":"10.1109/FITME.2008.141","DOIUrl":null,"url":null,"abstract":"A diameter-age model was developed for dahurian larch (Larix gmelinii. Rupr.) in northeastern China based on Chapman-Richards growth model using nonlinear mixed-effects modeling approach. The methods of model development include which parameters should be considered to be random and which should be purely fixed, as well as procedures for determining autoregressive correlation structures. Model performance was evaluated utilizing information criterion statistics (AIC, BIC, and LRT). The Chapman-Richards model with two random parameters showed the best performance. The inclusion of autoregressive models (AR(p), MA(q), ARMA(p,q)) in the mixed-effects model resulted in a significant improvement of model fitting statistics.","PeriodicalId":218182,"journal":{"name":"2008 International Seminar on Future Information Technology and Management Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling Tree Diameter Growth Using Nonlinear Mixed-Effects Models\",\"authors\":\"Lichun Jiang, Fengri Li\",\"doi\":\"10.1109/FITME.2008.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A diameter-age model was developed for dahurian larch (Larix gmelinii. Rupr.) in northeastern China based on Chapman-Richards growth model using nonlinear mixed-effects modeling approach. The methods of model development include which parameters should be considered to be random and which should be purely fixed, as well as procedures for determining autoregressive correlation structures. Model performance was evaluated utilizing information criterion statistics (AIC, BIC, and LRT). The Chapman-Richards model with two random parameters showed the best performance. The inclusion of autoregressive models (AR(p), MA(q), ARMA(p,q)) in the mixed-effects model resulted in a significant improvement of model fitting statistics.\",\"PeriodicalId\":218182,\"journal\":{\"name\":\"2008 International Seminar on Future Information Technology and Management Engineering\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Seminar on Future Information Technology and Management Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FITME.2008.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2008.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

建立了大落叶松的直径-年龄模型。基于Chapman-Richards生长模型,采用非线性混合效应建模方法对东北地区进行了研究。模型开发的方法包括哪些参数应被认为是随机的,哪些参数应被认为是纯固定的,以及确定自回归相关结构的程序。利用信息标准统计(AIC、BIC和LRT)评估模型的性能。具有两个随机参数的Chapman-Richards模型表现出最好的性能。在混合效应模型中加入自回归模型(AR(p)、MA(q)、ARMA(p,q)),模型拟合统计量显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Tree Diameter Growth Using Nonlinear Mixed-Effects Models
A diameter-age model was developed for dahurian larch (Larix gmelinii. Rupr.) in northeastern China based on Chapman-Richards growth model using nonlinear mixed-effects modeling approach. The methods of model development include which parameters should be considered to be random and which should be purely fixed, as well as procedures for determining autoregressive correlation structures. Model performance was evaluated utilizing information criterion statistics (AIC, BIC, and LRT). The Chapman-Richards model with two random parameters showed the best performance. The inclusion of autoregressive models (AR(p), MA(q), ARMA(p,q)) in the mixed-effects model resulted in a significant improvement of model fitting statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信