贝叶斯共同空间模式

Hyohyeong Kang, Seungjin Choi
{"title":"贝叶斯共同空间模式","authors":"Hyohyeong Kang, Seungjin Choi","doi":"10.1109/IWW-BCI.2013.6506606","DOIUrl":null,"url":null,"abstract":"Common spatial patterns (CSP) or its probabilistic counterpart, probabilistic CSP (PCSP), is a popular discriminative feature extraction method for automatically classifying electroencephalography (EEG) brain waves. Models for CSP or PCSP are trained on a subject-by-subject basis, so inter-subject information, which might be available when brain waves are measured from multiple subjects who undergo the same mental task, is neglected. In this paper we present a brief overview of our recent work on how Bayesian multi-task learning is applied to multi-subject EEG classification, treating subjects as tasks to capture inter-subject relatedness in Bayesian treatment of PCSP.","PeriodicalId":129758,"journal":{"name":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian common spatial patterns\",\"authors\":\"Hyohyeong Kang, Seungjin Choi\",\"doi\":\"10.1109/IWW-BCI.2013.6506606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Common spatial patterns (CSP) or its probabilistic counterpart, probabilistic CSP (PCSP), is a popular discriminative feature extraction method for automatically classifying electroencephalography (EEG) brain waves. Models for CSP or PCSP are trained on a subject-by-subject basis, so inter-subject information, which might be available when brain waves are measured from multiple subjects who undergo the same mental task, is neglected. In this paper we present a brief overview of our recent work on how Bayesian multi-task learning is applied to multi-subject EEG classification, treating subjects as tasks to capture inter-subject relatedness in Bayesian treatment of PCSP.\",\"PeriodicalId\":129758,\"journal\":{\"name\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2013.6506606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2013.6506606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

共同空间模式(CSP)或其对应的概率CSP (PCSP)是一种常用的判别特征提取方法,用于脑电图(EEG)脑电波的自动分类。CSP或PCSP的模型是在一个主题一个主题的基础上进行训练的,因此,当测量来自多个经历相同心理任务的受试者的脑电波时,可能会获得的主题间信息被忽略了。在本文中,我们简要概述了我们最近的工作,即如何将贝叶斯多任务学习应用于多主题EEG分类,将主题作为任务来捕获贝叶斯处理PCSP中的主题间相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian common spatial patterns
Common spatial patterns (CSP) or its probabilistic counterpart, probabilistic CSP (PCSP), is a popular discriminative feature extraction method for automatically classifying electroencephalography (EEG) brain waves. Models for CSP or PCSP are trained on a subject-by-subject basis, so inter-subject information, which might be available when brain waves are measured from multiple subjects who undergo the same mental task, is neglected. In this paper we present a brief overview of our recent work on how Bayesian multi-task learning is applied to multi-subject EEG classification, treating subjects as tasks to capture inter-subject relatedness in Bayesian treatment of PCSP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信