推荐系统中的用户公平性

Jurek Leonhardt, Avishek Anand, Megha Khosla
{"title":"推荐系统中的用户公平性","authors":"Jurek Leonhardt, Avishek Anand, Megha Khosla","doi":"10.1145/3184558.3186949","DOIUrl":null,"url":null,"abstract":"Recent works in recommendation systems have focused on diversity in recommendations as an important aspect of recommendation quality. In this work we argue that the post-processing algorithms aimed at only improving diversity among recommendations lead to discrimination among the users. We introduce the notion of user fairness which has been overlooked in literature so far and propose measures to quantify it. Our experiments on two diversification algorithms show that an increase in aggregate diversity results in increased disparity among the users.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"User Fairness in Recommender Systems\",\"authors\":\"Jurek Leonhardt, Avishek Anand, Megha Khosla\",\"doi\":\"10.1145/3184558.3186949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent works in recommendation systems have focused on diversity in recommendations as an important aspect of recommendation quality. In this work we argue that the post-processing algorithms aimed at only improving diversity among recommendations lead to discrimination among the users. We introduce the notion of user fairness which has been overlooked in literature so far and propose measures to quantify it. Our experiments on two diversification algorithms show that an increase in aggregate diversity results in increased disparity among the users.\",\"PeriodicalId\":235572,\"journal\":{\"name\":\"Companion Proceedings of the The Web Conference 2018\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the The Web Conference 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3184558.3186949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3186949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

推荐系统的近期研究主要关注推荐多样性,将其作为推荐质量的一个重要方面。在这项工作中,我们认为,后处理算法的目的只是提高多样性之间的推荐导致歧视的用户。我们引入了目前文献中被忽视的用户公平的概念,并提出了量化用户公平的措施。我们对两种多样化算法的实验表明,总多样性的增加会导致用户之间的差距增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User Fairness in Recommender Systems
Recent works in recommendation systems have focused on diversity in recommendations as an important aspect of recommendation quality. In this work we argue that the post-processing algorithms aimed at only improving diversity among recommendations lead to discrimination among the users. We introduce the notion of user fairness which has been overlooked in literature so far and propose measures to quantify it. Our experiments on two diversification algorithms show that an increase in aggregate diversity results in increased disparity among the users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信