二进制仿射特征变换

J. Arnfred, Viet Dung Nguyen, Stefan Winkler
{"title":"二进制仿射特征变换","authors":"J. Arnfred, Viet Dung Nguyen, Stefan Winkler","doi":"10.1109/ICIP.2017.8296797","DOIUrl":null,"url":null,"abstract":"We introduce BAFT, a fast binary and quasi affine invariant local image feature. It combines the affine invariance of Harris Affine feature descriptors with the speed of binary descriptors such as BRISK and ORB. BAFT derives its speed and precision from sampling local image patches in a pattern that depends on the second moment matrix of the same image patch. This approach results in a fast but discriminative descriptor, especially for image pairs with large perspective changes. Our evaluation on 40 different image pairs shows that BAFT increases the area under the precision/recall curve (AUC) compared to traditional descriptors for the majority of image pairs. In addition we show that this improvement comes with a very low performance penalty compared to the similar ORB descriptor. The BAFT source code is available for download.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BAFT: Binary affine feature transform\",\"authors\":\"J. Arnfred, Viet Dung Nguyen, Stefan Winkler\",\"doi\":\"10.1109/ICIP.2017.8296797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce BAFT, a fast binary and quasi affine invariant local image feature. It combines the affine invariance of Harris Affine feature descriptors with the speed of binary descriptors such as BRISK and ORB. BAFT derives its speed and precision from sampling local image patches in a pattern that depends on the second moment matrix of the same image patch. This approach results in a fast but discriminative descriptor, especially for image pairs with large perspective changes. Our evaluation on 40 different image pairs shows that BAFT increases the area under the precision/recall curve (AUC) compared to traditional descriptors for the majority of image pairs. In addition we show that this improvement comes with a very low performance penalty compared to the similar ORB descriptor. The BAFT source code is available for download.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

引入了一种快速的二值拟仿射不变局部图像特征BAFT。它结合了Harris仿射特征描述符的仿射不变性和二元描述符(如BRISK和ORB)的速度。BAFT的速度和精度来自于以依赖于同一图像块的第二矩矩阵的模式对局部图像块进行采样。这种方法产生了一个快速但有区别的描述符,特别是对于具有大视角变化的图像对。我们对40对不同图像对的评估表明,与传统描述符相比,BAFT在大多数图像对中增加了精度/召回曲线(AUC)下的面积。此外,我们还展示了与类似的ORB描述符相比,这种改进带来的性能损失非常低。BAFT源代码可供下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BAFT: Binary affine feature transform
We introduce BAFT, a fast binary and quasi affine invariant local image feature. It combines the affine invariance of Harris Affine feature descriptors with the speed of binary descriptors such as BRISK and ORB. BAFT derives its speed and precision from sampling local image patches in a pattern that depends on the second moment matrix of the same image patch. This approach results in a fast but discriminative descriptor, especially for image pairs with large perspective changes. Our evaluation on 40 different image pairs shows that BAFT increases the area under the precision/recall curve (AUC) compared to traditional descriptors for the majority of image pairs. In addition we show that this improvement comes with a very low performance penalty compared to the similar ORB descriptor. The BAFT source code is available for download.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信