基于形态学相似聚类的报警事务提取方法

Shaoguang Liu, Jun Xie, Zhicheng Zhao, Yang Li, Xin Yang
{"title":"基于形态学相似聚类的报警事务提取方法","authors":"Shaoguang Liu, Jun Xie, Zhicheng Zhao, Yang Li, Xin Yang","doi":"10.1109/ICCA.2019.8899629","DOIUrl":null,"url":null,"abstract":"In analysis of power communication alarm correlation, the original relational alarm data needs to be converted into alarm transactional data for mining association rule. Considering the low efficiency of traditional sliding time window that extracts alarm transactions, this paper proposes a method of extracting alarm transactions based on morphological similarity clustering. Considering spatial correlation of power communication alarms, the alarm sequence is divided into numerous sequence groups, which then are clustered into many clusters by morphological similarity measure. In each cluster, different time window width and sliding step are set to extract the alarm transactions. Experiments show that the time window method based on morphological similarity clustering has higher efficiency of extracting alarm transactions and is beneficial to acquisition of root fault.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extraction Method of Alarm Transaction Based on Morphology Similarity Clustering\",\"authors\":\"Shaoguang Liu, Jun Xie, Zhicheng Zhao, Yang Li, Xin Yang\",\"doi\":\"10.1109/ICCA.2019.8899629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In analysis of power communication alarm correlation, the original relational alarm data needs to be converted into alarm transactional data for mining association rule. Considering the low efficiency of traditional sliding time window that extracts alarm transactions, this paper proposes a method of extracting alarm transactions based on morphological similarity clustering. Considering spatial correlation of power communication alarms, the alarm sequence is divided into numerous sequence groups, which then are clustered into many clusters by morphological similarity measure. In each cluster, different time window width and sliding step are set to extract the alarm transactions. Experiments show that the time window method based on morphological similarity clustering has higher efficiency of extracting alarm transactions and is beneficial to acquisition of root fault.\",\"PeriodicalId\":130891,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2019.8899629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在电力通信告警关联分析中,需要将原有的关系告警数据转化为告警事务数据,以便挖掘关联规则。针对传统滑动时间窗提取告警事务效率较低的问题,提出了一种基于形态相似性聚类的告警事务提取方法。考虑到电力通信报警的空间相关性,将报警序列划分为多个序列组,然后通过形态相似性度量将报警序列聚为多个聚类。在每个聚类中,设置不同的时间窗宽度和滑动步长来提取告警事务。实验表明,基于形态相似性聚类的时间窗方法具有较高的告警事务提取效率,有利于根故障的获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction Method of Alarm Transaction Based on Morphology Similarity Clustering
In analysis of power communication alarm correlation, the original relational alarm data needs to be converted into alarm transactional data for mining association rule. Considering the low efficiency of traditional sliding time window that extracts alarm transactions, this paper proposes a method of extracting alarm transactions based on morphological similarity clustering. Considering spatial correlation of power communication alarms, the alarm sequence is divided into numerous sequence groups, which then are clustered into many clusters by morphological similarity measure. In each cluster, different time window width and sliding step are set to extract the alarm transactions. Experiments show that the time window method based on morphological similarity clustering has higher efficiency of extracting alarm transactions and is beneficial to acquisition of root fault.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信