使用应变计传感器的车辆类型自动分类

P. Shin, H. Jasso, S. Tilak, N. Cotofana, T. Fountain, L. Yan, M. Fraser, A. Elgamal
{"title":"使用应变计传感器的车辆类型自动分类","authors":"P. Shin, H. Jasso, S. Tilak, N. Cotofana, T. Fountain, L. Yan, M. Fraser, A. Elgamal","doi":"10.1109/PERCOMW.2007.25","DOIUrl":null,"url":null,"abstract":"In this paper we describe the use of machine learning algorithms (Naive Bayesian, neural network, and support vector machine) on data collected from strain gauge sensors to automatically classify vehicles into classes, ranging from small vehicles to combination trucks, along the lines of Federal Highway Administration vehicle classification guide. Knowing the types of vehicles can help reduce operating costs and improve the health monitoring of infrastructure and would help to make transportation safer and personalized; use of such non-image-based data permits user privacy. Our results indicate that the support vector machine technique outperforms the rest with an accuracy of 94.8%","PeriodicalId":352348,"journal":{"name":"Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW'07)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automatic Vehicle Type Classification Using Strain Gauge Sensors\",\"authors\":\"P. Shin, H. Jasso, S. Tilak, N. Cotofana, T. Fountain, L. Yan, M. Fraser, A. Elgamal\",\"doi\":\"10.1109/PERCOMW.2007.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe the use of machine learning algorithms (Naive Bayesian, neural network, and support vector machine) on data collected from strain gauge sensors to automatically classify vehicles into classes, ranging from small vehicles to combination trucks, along the lines of Federal Highway Administration vehicle classification guide. Knowing the types of vehicles can help reduce operating costs and improve the health monitoring of infrastructure and would help to make transportation safer and personalized; use of such non-image-based data permits user privacy. Our results indicate that the support vector machine technique outperforms the rest with an accuracy of 94.8%\",\"PeriodicalId\":352348,\"journal\":{\"name\":\"Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW'07)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2007.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2007.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们描述了使用机器学习算法(朴素贝叶斯,神经网络和支持向量机)对从应变计传感器收集的数据进行自动分类,从小型车辆到组合卡车,按照联邦公路管理局车辆分类指南进行分类。了解车辆类型有助于降低运营成本,改善基础设施的健康监测,并有助于使交通更安全和个性化;使用这种非基于图像的数据可以保护用户隐私。我们的结果表明,支持向量机技术优于其他技术,准确率为94.8%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Vehicle Type Classification Using Strain Gauge Sensors
In this paper we describe the use of machine learning algorithms (Naive Bayesian, neural network, and support vector machine) on data collected from strain gauge sensors to automatically classify vehicles into classes, ranging from small vehicles to combination trucks, along the lines of Federal Highway Administration vehicle classification guide. Knowing the types of vehicles can help reduce operating costs and improve the health monitoring of infrastructure and would help to make transportation safer and personalized; use of such non-image-based data permits user privacy. Our results indicate that the support vector machine technique outperforms the rest with an accuracy of 94.8%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信