香港股票市场的回报间隔分析

Hong Zhang, Nianpeng Wang, Keqiang Dong
{"title":"香港股票市场的回报间隔分析","authors":"Hong Zhang, Nianpeng Wang, Keqiang Dong","doi":"10.1109/CINC.2009.108","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the Hang Seng Index data for the 22-year period, from December 31, 1986, to June 6,2008 in the Hongkong stock market, a total of 5315 trading days. Using rescaled range method, we study how the threshold value q affects the correlations of the return intervals s r(τ ) between events above a certain threshold q. We find that: i) both return intervals obtained by different threshold q and the original series are arranged in long-range dependence behavior; ii) the correlations of the return intervals grow stronger when the threshold q is larger.","PeriodicalId":173506,"journal":{"name":"2009 International Conference on Computational Intelligence and Natural Computing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Return Intervals Analysis of the Hong Kong Stock Market\",\"authors\":\"Hong Zhang, Nianpeng Wang, Keqiang Dong\",\"doi\":\"10.1109/CINC.2009.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the Hang Seng Index data for the 22-year period, from December 31, 1986, to June 6,2008 in the Hongkong stock market, a total of 5315 trading days. Using rescaled range method, we study how the threshold value q affects the correlations of the return intervals s r(τ ) between events above a certain threshold q. We find that: i) both return intervals obtained by different threshold q and the original series are arranged in long-range dependence behavior; ii) the correlations of the return intervals grow stronger when the threshold q is larger.\",\"PeriodicalId\":173506,\"journal\":{\"name\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2009.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2009.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了香港股市从1986年12月31日至2008年6月6日22年期间的恒生指数数据,共5315个交易日。利用重标量程方法,研究了阈值q对阈值q以上事件间的回归区间s r(τ)相关性的影响。结果表明:1)不同阈值q得到的回归区间与原序列均呈现长期依赖关系;Ii)阈值q越大,回归区间的相关性越强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Return Intervals Analysis of the Hong Kong Stock Market
In this paper, we analyze the Hang Seng Index data for the 22-year period, from December 31, 1986, to June 6,2008 in the Hongkong stock market, a total of 5315 trading days. Using rescaled range method, we study how the threshold value q affects the correlations of the return intervals s r(τ ) between events above a certain threshold q. We find that: i) both return intervals obtained by different threshold q and the original series are arranged in long-range dependence behavior; ii) the correlations of the return intervals grow stronger when the threshold q is larger.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信