标量场理论中的随机重整化群与梯度流

A. Carosso, A. Hasenfratz, E. Neil
{"title":"标量场理论中的随机重整化群与梯度流","authors":"A. Carosso, A. Hasenfratz, E. Neil","doi":"10.22323/1.363.0287","DOIUrl":null,"url":null,"abstract":"Recently, the connections between gradient flow and renormalization group have been explored analytically and numerically. Gradient flow (when modified by a field rescaling) can be characterized as a continuous blocking transformation. In this work, we draw a connection between gradient flow and functional renormalization group by describing how FRG can be represented by a stochastic process, and how the stochastic observables relate to gradient flow observables. The relation implies correlator scaling formulae that can be applied numerically in lattice simulations. We present preliminary results on anomalous dimensions obtained from such measurements in the context of 3-dimensional lattice $\\phi^4$ theory.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stochastic Renormalization Group and Gradient Flow in Scalar Field Theory\",\"authors\":\"A. Carosso, A. Hasenfratz, E. Neil\",\"doi\":\"10.22323/1.363.0287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the connections between gradient flow and renormalization group have been explored analytically and numerically. Gradient flow (when modified by a field rescaling) can be characterized as a continuous blocking transformation. In this work, we draw a connection between gradient flow and functional renormalization group by describing how FRG can be represented by a stochastic process, and how the stochastic observables relate to gradient flow observables. The relation implies correlator scaling formulae that can be applied numerically in lattice simulations. We present preliminary results on anomalous dimensions obtained from such measurements in the context of 3-dimensional lattice $\\\\phi^4$ theory.\",\"PeriodicalId\":147987,\"journal\":{\"name\":\"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.363.0287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,人们对梯度流与重整化群之间的关系进行了分析和数值研究。梯度流(当被场重新缩放修改时)可以被表征为连续的块变换。在这项工作中,我们通过描述FRG如何用随机过程表示,以及随机观测值与梯度流观测值之间的关系,建立了梯度流与功能重整化群之间的联系。该关系暗示了相关器缩放公式,可以在数值上应用于晶格模拟。我们在三维晶格$\phi^4$理论的背景下给出了从这些测量中得到的异常维的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Renormalization Group and Gradient Flow in Scalar Field Theory
Recently, the connections between gradient flow and renormalization group have been explored analytically and numerically. Gradient flow (when modified by a field rescaling) can be characterized as a continuous blocking transformation. In this work, we draw a connection between gradient flow and functional renormalization group by describing how FRG can be represented by a stochastic process, and how the stochastic observables relate to gradient flow observables. The relation implies correlator scaling formulae that can be applied numerically in lattice simulations. We present preliminary results on anomalous dimensions obtained from such measurements in the context of 3-dimensional lattice $\phi^4$ theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信