群显式方法解抛物型偏微分方程的收缩阵列

D. J. Evans, G. Megson
{"title":"群显式方法解抛物型偏微分方程的收缩阵列","authors":"D. J. Evans, G. Megson","doi":"10.1109/ARRAYS.1988.18072","DOIUrl":null,"url":null,"abstract":"A systolic array implementation for solving parabolic equations numerically is presented. The finite-difference methods used are stable asymmetric approximations to the partial differential equations, which when coupled in groups of two adjacent points on the grid result in implicit equations that are easily converted to explicit form, thus offering many advantages suitable for solution by VLSI techniques. The regularity obtained from the grid structure and locality of data from groups of small size, combined with the attributes of truncation error cancellations and alternating the strategies of grid points, give unconditional stability and an efficient, systolic design.<<ETX>>","PeriodicalId":339807,"journal":{"name":"[1988] Proceedings. International Conference on Systolic Arrays","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systolic arrays for group explicit methods for solving parabolic partial differential equations\",\"authors\":\"D. J. Evans, G. Megson\",\"doi\":\"10.1109/ARRAYS.1988.18072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systolic array implementation for solving parabolic equations numerically is presented. The finite-difference methods used are stable asymmetric approximations to the partial differential equations, which when coupled in groups of two adjacent points on the grid result in implicit equations that are easily converted to explicit form, thus offering many advantages suitable for solution by VLSI techniques. The regularity obtained from the grid structure and locality of data from groups of small size, combined with the attributes of truncation error cancellations and alternating the strategies of grid points, give unconditional stability and an efficient, systolic design.<<ETX>>\",\"PeriodicalId\":339807,\"journal\":{\"name\":\"[1988] Proceedings. International Conference on Systolic Arrays\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988] Proceedings. International Conference on Systolic Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARRAYS.1988.18072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988] Proceedings. International Conference on Systolic Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARRAYS.1988.18072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于数值求解抛物方程的收缩阵列实现。所使用的有限差分方法是对偏微分方程的稳定非对称近似,当将其耦合成网格上两个相邻点的组时,可以得到易于转换为显式形式的隐式方程,因此具有许多适合超大规模集成电路技术求解的优点。从网格结构和小尺寸组数据的局域性中获得的规律性,结合截断误差抵消和网格点交替策略的属性,给予了无条件的稳定性和有效的收缩设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systolic arrays for group explicit methods for solving parabolic partial differential equations
A systolic array implementation for solving parabolic equations numerically is presented. The finite-difference methods used are stable asymmetric approximations to the partial differential equations, which when coupled in groups of two adjacent points on the grid result in implicit equations that are easily converted to explicit form, thus offering many advantages suitable for solution by VLSI techniques. The regularity obtained from the grid structure and locality of data from groups of small size, combined with the attributes of truncation error cancellations and alternating the strategies of grid points, give unconditional stability and an efficient, systolic design.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信