夜间视频监控中的目标检测与跟踪

Abdullah Nazib, Chi-Min Oh, Chil-Woo Lee
{"title":"夜间视频监控中的目标检测与跟踪","authors":"Abdullah Nazib, Chi-Min Oh, Chil-Woo Lee","doi":"10.1109/URAI.2013.6677410","DOIUrl":null,"url":null,"abstract":"Object tracking is always a challenging research to the computer vision community. It becomes more difficult at night video systems due to low contrast against the background. This paper is proposing a framework that detects object and tracks it at low contrast night surveillance video. A robust intensity statistics based detection method has been designed for processing low contrast frame and detect object structure from it. Based on successful detection, it tracks the object using Kalman filter algorithm.","PeriodicalId":431699,"journal":{"name":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Object detection and tracking in night time video surveillance\",\"authors\":\"Abdullah Nazib, Chi-Min Oh, Chil-Woo Lee\",\"doi\":\"10.1109/URAI.2013.6677410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object tracking is always a challenging research to the computer vision community. It becomes more difficult at night video systems due to low contrast against the background. This paper is proposing a framework that detects object and tracks it at low contrast night surveillance video. A robust intensity statistics based detection method has been designed for processing low contrast frame and detect object structure from it. Based on successful detection, it tracks the object using Kalman filter algorithm.\",\"PeriodicalId\":431699,\"journal\":{\"name\":\"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2013.6677410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2013.6677410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

目标跟踪一直是计算机视觉领域的一个具有挑战性的研究课题。在夜间视频系统中,由于背景对比度较低,这变得更加困难。本文提出了一种在低对比度夜间监控视频中检测目标并对其进行跟踪的框架。设计了一种基于强度统计的鲁棒检测方法,用于处理低对比度帧并从中检测目标结构。在检测成功的基础上,利用卡尔曼滤波算法对目标进行跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object detection and tracking in night time video surveillance
Object tracking is always a challenging research to the computer vision community. It becomes more difficult at night video systems due to low contrast against the background. This paper is proposing a framework that detects object and tracks it at low contrast night surveillance video. A robust intensity statistics based detection method has been designed for processing low contrast frame and detect object structure from it. Based on successful detection, it tracks the object using Kalman filter algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信