Bradley A. Ling, T. Lettenmaier, M. Fowler, M. Cameron, A. Viselli
{"title":"Azura商用波浪能转换器1/15比例波浪槽模型的设计与建造","authors":"Bradley A. Ling, T. Lettenmaier, M. Fowler, M. Cameron, A. Viselli","doi":"10.1115/omae2019-95538","DOIUrl":null,"url":null,"abstract":"\n The design of a 1/15th geometrically scaled wave tank model of the Azura™ commercial-scale wave energy device is presented. The objectives of the wave tank tests, conducted at the University of Maine Harlod Alfond Wind/Wave Ocean Engineering Lab (W2), included verification of the Azura’s energy capture in irregular waves, evaluation of performance in survival wave conditions, and testing of two advanced control algorithms. Due to the difficulty in properly Froude Scaling a hydraulic system, the model used a direct-drive rotary motor/generator power takeoff (PTO), with the dynamics of the hydraulic PTO included via a hardware-in-the-loop simulation. This PTO implementation led to additional design requirements being imposed on the model drivetrain. In addition to the model PTO design, the instrumentation design, structural design, and test plans are presented. The resulting model and PTO achieved a high level of controllability, and accurately emulated the dynamics of the hydraulic PTO of the full-scale Azura prototype.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Construction of a 1/15th Scale Wave Tank Model of the Azura Commercial Wave Energy Converter\",\"authors\":\"Bradley A. Ling, T. Lettenmaier, M. Fowler, M. Cameron, A. Viselli\",\"doi\":\"10.1115/omae2019-95538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The design of a 1/15th geometrically scaled wave tank model of the Azura™ commercial-scale wave energy device is presented. The objectives of the wave tank tests, conducted at the University of Maine Harlod Alfond Wind/Wave Ocean Engineering Lab (W2), included verification of the Azura’s energy capture in irregular waves, evaluation of performance in survival wave conditions, and testing of two advanced control algorithms. Due to the difficulty in properly Froude Scaling a hydraulic system, the model used a direct-drive rotary motor/generator power takeoff (PTO), with the dynamics of the hydraulic PTO included via a hardware-in-the-loop simulation. This PTO implementation led to additional design requirements being imposed on the model drivetrain. In addition to the model PTO design, the instrumentation design, structural design, and test plans are presented. The resulting model and PTO achieved a high level of controllability, and accurately emulated the dynamics of the hydraulic PTO of the full-scale Azura prototype.\",\"PeriodicalId\":306681,\"journal\":{\"name\":\"Volume 10: Ocean Renewable Energy\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Ocean Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Construction of a 1/15th Scale Wave Tank Model of the Azura Commercial Wave Energy Converter
The design of a 1/15th geometrically scaled wave tank model of the Azura™ commercial-scale wave energy device is presented. The objectives of the wave tank tests, conducted at the University of Maine Harlod Alfond Wind/Wave Ocean Engineering Lab (W2), included verification of the Azura’s energy capture in irregular waves, evaluation of performance in survival wave conditions, and testing of two advanced control algorithms. Due to the difficulty in properly Froude Scaling a hydraulic system, the model used a direct-drive rotary motor/generator power takeoff (PTO), with the dynamics of the hydraulic PTO included via a hardware-in-the-loop simulation. This PTO implementation led to additional design requirements being imposed on the model drivetrain. In addition to the model PTO design, the instrumentation design, structural design, and test plans are presented. The resulting model and PTO achieved a high level of controllability, and accurately emulated the dynamics of the hydraulic PTO of the full-scale Azura prototype.