802.15.4 WSNs中参数最优设置的实时自适应算法

Simone Brienza, M. Roveri, Domenico De Guglielmo, G. Anastasi
{"title":"802.15.4 WSNs中参数最优设置的实时自适应算法","authors":"Simone Brienza, M. Roveri, Domenico De Guglielmo, G. Anastasi","doi":"10.1145/2818713","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that the IEEE 802.15.4 MAC protocol suffers from severe limitations, in terms of reliability and energy efficiency, when the CSMA/CA parameter setting is not appropriate. However, selecting the optimal setting that guarantees the application reliability requirements, with minimum energy consumption, is not a trivial task in wireless sensor networks, especially when the operating conditions change over time. In this paper we propose a Just-in-Time LEarning-based Adaptive Parameter tuning (JIT-LEAP) algorithm that adapts the CSMA/CA parameter setting to the time-varying operating conditions by also exploiting the past history to find the most appropriate setting for the current conditions. Following the approach of active adaptive algorithms, the adaptation mechanism of JIT-LEAP is triggered by a change detection test only when needed (i.e., in response to a change in the operating conditions). Simulation results show that the proposed algorithm outperforms other similar algorithms, both in stationary and dynamic scenarios.","PeriodicalId":377078,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Just-in-Time Adaptive Algorithm for Optimal Parameter Setting in 802.15.4 WSNs\",\"authors\":\"Simone Brienza, M. Roveri, Domenico De Guglielmo, G. Anastasi\",\"doi\":\"10.1145/2818713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have shown that the IEEE 802.15.4 MAC protocol suffers from severe limitations, in terms of reliability and energy efficiency, when the CSMA/CA parameter setting is not appropriate. However, selecting the optimal setting that guarantees the application reliability requirements, with minimum energy consumption, is not a trivial task in wireless sensor networks, especially when the operating conditions change over time. In this paper we propose a Just-in-Time LEarning-based Adaptive Parameter tuning (JIT-LEAP) algorithm that adapts the CSMA/CA parameter setting to the time-varying operating conditions by also exploiting the past history to find the most appropriate setting for the current conditions. Following the approach of active adaptive algorithms, the adaptation mechanism of JIT-LEAP is triggered by a change detection test only when needed (i.e., in response to a change in the operating conditions). Simulation results show that the proposed algorithm outperforms other similar algorithms, both in stationary and dynamic scenarios.\",\"PeriodicalId\":377078,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

最近的研究表明,当CSMA/CA参数设置不合适时,IEEE 802.15.4 MAC协议在可靠性和能效方面受到严重限制。然而,在无线传感器网络中,选择既能保证应用可靠性要求又能保证最小能耗的最佳设置并不是一项简单的任务,特别是当操作条件随时间变化时。在本文中,我们提出了一种基于即时学习的自适应参数调整(JIT-LEAP)算法,该算法通过利用过去的历史来找到适合当前条件的最合适的设置,从而使CSMA/CA参数设置适应时变的运行条件。遵循主动自适应算法的方法,JIT-LEAP的自适应机制仅在需要时(即响应运行条件的变化时)由变更检测测试触发。仿真结果表明,该算法在静态和动态场景下均优于其他类似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Just-in-Time Adaptive Algorithm for Optimal Parameter Setting in 802.15.4 WSNs
Recent studies have shown that the IEEE 802.15.4 MAC protocol suffers from severe limitations, in terms of reliability and energy efficiency, when the CSMA/CA parameter setting is not appropriate. However, selecting the optimal setting that guarantees the application reliability requirements, with minimum energy consumption, is not a trivial task in wireless sensor networks, especially when the operating conditions change over time. In this paper we propose a Just-in-Time LEarning-based Adaptive Parameter tuning (JIT-LEAP) algorithm that adapts the CSMA/CA parameter setting to the time-varying operating conditions by also exploiting the past history to find the most appropriate setting for the current conditions. Following the approach of active adaptive algorithms, the adaptation mechanism of JIT-LEAP is triggered by a change detection test only when needed (i.e., in response to a change in the operating conditions). Simulation results show that the proposed algorithm outperforms other similar algorithms, both in stationary and dynamic scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信