通过分布鲁棒学习训练置信度校准分类器

Hang Wu, May D. Wang
{"title":"通过分布鲁棒学习训练置信度校准分类器","authors":"Hang Wu, May D. Wang","doi":"10.1109/COMPSAC48688.2020.0-230","DOIUrl":null,"url":null,"abstract":"Supervised learning via empirical risk minimization, despite its solid theoretical foundations, faces a major challenge in generalization capability, which limits its application in real-world data science problems. In particular, current models fail to distinguish in-distribution and out-of-distribution and give over confident predictions for out-of-distribution samples. In this paper, we propose an distributionally robust learning method to train classifiers via solving an unconstrained minimax game between an adversary test distribution and a hypothesis. We showed the theoretical generalization performance guarantees, and empirically, our learned classifier when coupled with thresholded detectors, can efficiently detect out-of-distribution samples.","PeriodicalId":430098,"journal":{"name":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Training Confidence-Calibrated Classifier via Distributionally Robust Learning\",\"authors\":\"Hang Wu, May D. Wang\",\"doi\":\"10.1109/COMPSAC48688.2020.0-230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised learning via empirical risk minimization, despite its solid theoretical foundations, faces a major challenge in generalization capability, which limits its application in real-world data science problems. In particular, current models fail to distinguish in-distribution and out-of-distribution and give over confident predictions for out-of-distribution samples. In this paper, we propose an distributionally robust learning method to train classifiers via solving an unconstrained minimax game between an adversary test distribution and a hypothesis. We showed the theoretical generalization performance guarantees, and empirically, our learned classifier when coupled with thresholded detectors, can efficiently detect out-of-distribution samples.\",\"PeriodicalId\":430098,\"journal\":{\"name\":\"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC48688.2020.0-230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC48688.2020.0-230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于经验风险最小化的监督学习虽然具有坚实的理论基础,但在泛化能力方面面临重大挑战,这限制了其在现实数据科学问题中的应用。特别是,目前的模型无法区分分布内和分布外,并且对分布外样本的预测过于自信。在本文中,我们提出了一种分布鲁棒学习方法,通过求解对手测试分布和假设之间的无约束极大极小博弈来训练分类器。从理论上证明了该分类器的泛化性能保证,并从经验上证明了该分类器与阈值检测器相结合,可以有效地检测出超出分布的样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training Confidence-Calibrated Classifier via Distributionally Robust Learning
Supervised learning via empirical risk minimization, despite its solid theoretical foundations, faces a major challenge in generalization capability, which limits its application in real-world data science problems. In particular, current models fail to distinguish in-distribution and out-of-distribution and give over confident predictions for out-of-distribution samples. In this paper, we propose an distributionally robust learning method to train classifiers via solving an unconstrained minimax game between an adversary test distribution and a hypothesis. We showed the theoretical generalization performance guarantees, and empirically, our learned classifier when coupled with thresholded detectors, can efficiently detect out-of-distribution samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信