具有同步跳跃模型的随机波动期权定价的高阶紧致有限差分格式

Bertram Düring, A. Pitkin
{"title":"具有同步跳跃模型的随机波动期权定价的高阶紧致有限差分格式","authors":"Bertram Düring, A. Pitkin","doi":"10.2139/ssrn.3275199","DOIUrl":null,"url":null,"abstract":"We extend the scheme developed in B. During, A. We extend the scheme developed in B. During, A. Pitkin, \"High-order compact finite difference scheme for option pricing in stochastic volatility jump models\", 2019, to the so-called stochastic volatility with contemporaneous jumps (SVCJ) model, derived by Duffie, Pan and Singleton. The performance of the scheme is assessed through a number of numerical experiments, using comparisons against a standard second-order central difference scheme. We observe that the new high-order compact scheme achieves fourth order convergence and discuss the effects on efficiency and computation time.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Order Compact Finite Difference Scheme for Option Pricing in Stochastic Volatility With Contemporaneous Jump Models\",\"authors\":\"Bertram Düring, A. Pitkin\",\"doi\":\"10.2139/ssrn.3275199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the scheme developed in B. During, A. We extend the scheme developed in B. During, A. Pitkin, \\\"High-order compact finite difference scheme for option pricing in stochastic volatility jump models\\\", 2019, to the so-called stochastic volatility with contemporaneous jumps (SVCJ) model, derived by Duffie, Pan and Singleton. The performance of the scheme is assessed through a number of numerical experiments, using comparisons against a standard second-order central difference scheme. We observe that the new high-order compact scheme achieves fourth order convergence and discuss the effects on efficiency and computation time.\",\"PeriodicalId\":129812,\"journal\":{\"name\":\"Financial Engineering eJournal\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3275199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3275199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们将B. During, A. Pitkin,“随机波动率跳跃模型中期权定价的高阶紧凑有限差分格式”,2019中开发的方案推广到Duffie, Pan和Singleton推导的所谓的随机波动率与同期跳跃(SVCJ)模型。通过与标准二阶中心差分格式的比较,对该格式的性能进行了评估。我们观察到新的高阶紧凑格式达到了四阶收敛,并讨论了对效率和计算时间的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Order Compact Finite Difference Scheme for Option Pricing in Stochastic Volatility With Contemporaneous Jump Models
We extend the scheme developed in B. During, A. We extend the scheme developed in B. During, A. Pitkin, "High-order compact finite difference scheme for option pricing in stochastic volatility jump models", 2019, to the so-called stochastic volatility with contemporaneous jumps (SVCJ) model, derived by Duffie, Pan and Singleton. The performance of the scheme is assessed through a number of numerical experiments, using comparisons against a standard second-order central difference scheme. We observe that the new high-order compact scheme achieves fourth order convergence and discuss the effects on efficiency and computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信