{"title":"具有同步跳跃模型的随机波动期权定价的高阶紧致有限差分格式","authors":"Bertram Düring, A. Pitkin","doi":"10.2139/ssrn.3275199","DOIUrl":null,"url":null,"abstract":"We extend the scheme developed in B. During, A. We extend the scheme developed in B. During, A. Pitkin, \"High-order compact finite difference scheme for option pricing in stochastic volatility jump models\", 2019, to the so-called stochastic volatility with contemporaneous jumps (SVCJ) model, derived by Duffie, Pan and Singleton. The performance of the scheme is assessed through a number of numerical experiments, using comparisons against a standard second-order central difference scheme. We observe that the new high-order compact scheme achieves fourth order convergence and discuss the effects on efficiency and computation time.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Order Compact Finite Difference Scheme for Option Pricing in Stochastic Volatility With Contemporaneous Jump Models\",\"authors\":\"Bertram Düring, A. Pitkin\",\"doi\":\"10.2139/ssrn.3275199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the scheme developed in B. During, A. We extend the scheme developed in B. During, A. Pitkin, \\\"High-order compact finite difference scheme for option pricing in stochastic volatility jump models\\\", 2019, to the so-called stochastic volatility with contemporaneous jumps (SVCJ) model, derived by Duffie, Pan and Singleton. The performance of the scheme is assessed through a number of numerical experiments, using comparisons against a standard second-order central difference scheme. We observe that the new high-order compact scheme achieves fourth order convergence and discuss the effects on efficiency and computation time.\",\"PeriodicalId\":129812,\"journal\":{\"name\":\"Financial Engineering eJournal\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3275199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3275199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
我们将B. During, A. Pitkin,“随机波动率跳跃模型中期权定价的高阶紧凑有限差分格式”,2019中开发的方案推广到Duffie, Pan和Singleton推导的所谓的随机波动率与同期跳跃(SVCJ)模型。通过与标准二阶中心差分格式的比较,对该格式的性能进行了评估。我们观察到新的高阶紧凑格式达到了四阶收敛,并讨论了对效率和计算时间的影响。
High-Order Compact Finite Difference Scheme for Option Pricing in Stochastic Volatility With Contemporaneous Jump Models
We extend the scheme developed in B. During, A. We extend the scheme developed in B. During, A. Pitkin, "High-order compact finite difference scheme for option pricing in stochastic volatility jump models", 2019, to the so-called stochastic volatility with contemporaneous jumps (SVCJ) model, derived by Duffie, Pan and Singleton. The performance of the scheme is assessed through a number of numerical experiments, using comparisons against a standard second-order central difference scheme. We observe that the new high-order compact scheme achieves fourth order convergence and discuss the effects on efficiency and computation time.