M. Zaimi, H. E. Achouby, A. Ibral, E. Assaid, M. Maliki, R. Saadani
{"title":"利用模型物理参数解析表达式预测光伏太阳能组件峰值功率和效率的温度和入射辐照度实时监测","authors":"M. Zaimi, H. E. Achouby, A. Ibral, E. Assaid, M. Maliki, R. Saadani","doi":"10.1109/IRSEC.2018.8702973","DOIUrl":null,"url":null,"abstract":"In this paper, we proceed to a daily monitoring of module temperature T and incident solar irradiance G received on south faced tilted fixed photovoltaic solar module modelled by single diode equivalent electronic circuit. We assume that module series resistance Rs and shunt conductance Gp are constant and equal to values corresponding to standard test conditions (STC). We derive new analytical expressions describing variations of photocurrent Iph, ideality factor η and saturation current Is as functions of temperature T and irradiance G, using temperature coefficients available and irradiance coefficients extracted from manufacturer’s datasheet. We determine analytically and numerically variations of photocurrent, ideality factor and saturation current throughout a day. We deduce temporal evolving of maximum power point current Impp, maximum power point voltage Vmpp and module efficiency of Sunmodule plus SW255 polycrystalline silicon based photovoltaic solar module and compare with maximum power point and module efficiency experimental data. We raise a very good agreement between predicted values and experimental measurements.","PeriodicalId":186042,"journal":{"name":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Temporal Monitoring of Temperature and Incident Irradiance for Predicting Photovoltaic Solar Module Peak Power and Efficiency using Analytical Expressions of Model Physical Parameters\",\"authors\":\"M. Zaimi, H. E. Achouby, A. Ibral, E. Assaid, M. Maliki, R. Saadani\",\"doi\":\"10.1109/IRSEC.2018.8702973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proceed to a daily monitoring of module temperature T and incident solar irradiance G received on south faced tilted fixed photovoltaic solar module modelled by single diode equivalent electronic circuit. We assume that module series resistance Rs and shunt conductance Gp are constant and equal to values corresponding to standard test conditions (STC). We derive new analytical expressions describing variations of photocurrent Iph, ideality factor η and saturation current Is as functions of temperature T and irradiance G, using temperature coefficients available and irradiance coefficients extracted from manufacturer’s datasheet. We determine analytically and numerically variations of photocurrent, ideality factor and saturation current throughout a day. We deduce temporal evolving of maximum power point current Impp, maximum power point voltage Vmpp and module efficiency of Sunmodule plus SW255 polycrystalline silicon based photovoltaic solar module and compare with maximum power point and module efficiency experimental data. We raise a very good agreement between predicted values and experimental measurements.\",\"PeriodicalId\":186042,\"journal\":{\"name\":\"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRSEC.2018.8702973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2018.8702973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal Monitoring of Temperature and Incident Irradiance for Predicting Photovoltaic Solar Module Peak Power and Efficiency using Analytical Expressions of Model Physical Parameters
In this paper, we proceed to a daily monitoring of module temperature T and incident solar irradiance G received on south faced tilted fixed photovoltaic solar module modelled by single diode equivalent electronic circuit. We assume that module series resistance Rs and shunt conductance Gp are constant and equal to values corresponding to standard test conditions (STC). We derive new analytical expressions describing variations of photocurrent Iph, ideality factor η and saturation current Is as functions of temperature T and irradiance G, using temperature coefficients available and irradiance coefficients extracted from manufacturer’s datasheet. We determine analytically and numerically variations of photocurrent, ideality factor and saturation current throughout a day. We deduce temporal evolving of maximum power point current Impp, maximum power point voltage Vmpp and module efficiency of Sunmodule plus SW255 polycrystalline silicon based photovoltaic solar module and compare with maximum power point and module efficiency experimental data. We raise a very good agreement between predicted values and experimental measurements.