Android恶意软件检测的机器学习技术比较研究

Mohamed Guendouz, Abdelmalek Amine
{"title":"Android恶意软件检测的机器学习技术比较研究","authors":"Mohamed Guendouz, Abdelmalek Amine","doi":"10.4018/ijsi.309719","DOIUrl":null,"url":null,"abstract":"The rapid growth and wide availability of Android applications in recent years has resulted in a spike in the number of sophisticated harmful applications targeting Android users. Because of the popularity and amount of open-sourced supported features of Android OS, cyber attackers prefer to target Android-based devices over other smartphones. Malicious programs endanger user privacy and device integrity. To address this issue, the authors investigated machine learning algorithms for detecting malware in Android in this study. They employed a static analysis approach, collecting permissions from each application's APK and then generating feature vectors based on the extracted permissions. Finally, they trained several machine learning algorithms to create classification models that can distinguish between benign and malicious applications. According to experimental findings, random forest and multi-layer perceptron approaches, which have accuracy levels of 95.4% and 95.1%, respectively, have the best classification performance.","PeriodicalId":396598,"journal":{"name":"Int. J. Softw. Innov.","volume":"414 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comparative Study of Machine Learning Techniques for Android Malware Detection\",\"authors\":\"Mohamed Guendouz, Abdelmalek Amine\",\"doi\":\"10.4018/ijsi.309719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth and wide availability of Android applications in recent years has resulted in a spike in the number of sophisticated harmful applications targeting Android users. Because of the popularity and amount of open-sourced supported features of Android OS, cyber attackers prefer to target Android-based devices over other smartphones. Malicious programs endanger user privacy and device integrity. To address this issue, the authors investigated machine learning algorithms for detecting malware in Android in this study. They employed a static analysis approach, collecting permissions from each application's APK and then generating feature vectors based on the extracted permissions. Finally, they trained several machine learning algorithms to create classification models that can distinguish between benign and malicious applications. According to experimental findings, random forest and multi-layer perceptron approaches, which have accuracy levels of 95.4% and 95.1%, respectively, have the best classification performance.\",\"PeriodicalId\":396598,\"journal\":{\"name\":\"Int. J. Softw. Innov.\",\"volume\":\"414 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Innov.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsi.309719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsi.309719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,Android应用程序的快速增长和广泛可用性导致针对Android用户的复杂有害应用程序数量激增。由于Android操作系统的受欢迎程度和开源支持功能的数量,网络攻击者更喜欢瞄准基于Android的设备,而不是其他智能手机。恶意程序危害用户隐私和设备完整性。为了解决这个问题,作者在本研究中研究了用于检测Android恶意软件的机器学习算法。他们采用静态分析方法,从每个应用程序的APK中收集权限,然后根据提取的权限生成特征向量。最后,他们训练了几种机器学习算法来创建可以区分良性和恶意应用程序的分类模型。实验结果表明,随机森林和多层感知器方法的分类性能最好,准确率分别为95.4%和95.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Machine Learning Techniques for Android Malware Detection
The rapid growth and wide availability of Android applications in recent years has resulted in a spike in the number of sophisticated harmful applications targeting Android users. Because of the popularity and amount of open-sourced supported features of Android OS, cyber attackers prefer to target Android-based devices over other smartphones. Malicious programs endanger user privacy and device integrity. To address this issue, the authors investigated machine learning algorithms for detecting malware in Android in this study. They employed a static analysis approach, collecting permissions from each application's APK and then generating feature vectors based on the extracted permissions. Finally, they trained several machine learning algorithms to create classification models that can distinguish between benign and malicious applications. According to experimental findings, random forest and multi-layer perceptron approaches, which have accuracy levels of 95.4% and 95.1%, respectively, have the best classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信