Mg/Al水滑石合成过程中沉淀pH和温度对葡萄糖异构化的影响

A. R. Permanasari
{"title":"Mg/Al水滑石合成过程中沉淀pH和温度对葡萄糖异构化的影响","authors":"A. R. Permanasari","doi":"10.35313/ijatr.v3i1.55","DOIUrl":null,"url":null,"abstract":"Mg/Al Hydrotalcite as the catalyst in isomerization of glucose into fructose was made by coprecipitation of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Operating condition of precipitation including the temperature and pH was determined by Response Surface Method (RSM). The catalyst synthesis was carried out in the mole ratio of Mg/Al 3:1 for 18 h and the catalyst was activated by calcination for 3 h at 500°C. Catalyst characterization was done by FTIR, BET, and XRD. The highest mass product of Hydrotalcite Mg/Al 4.52 g, reached at the precipitation conditions of pH 9 and temperature of 45ºC. The catalytic activity of hydrotalcite Mg/Al was tested by the isomerization of Glucose into Fructose. The highest yield and selectivity were 20.14%, 62.40%, respectively. It was reached in pH 9 and 45ºC. While the highest conversion, 53.47%, was achieved in the pH 11.12 with a precipitation temperature of 45ºC. By the RSM analysis, neither the mass of catalyst product nor the catalytic activity from the isomerization (yield, conversion, and selectivity) were affected significantly by the pH and temperature precipitation.","PeriodicalId":382187,"journal":{"name":"Current Journal: International Journal Applied Technology Research","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effectiveness of precipitation pH and temperature of Mg/Al Hydrotalcite synthesis on the glucose isomerization\",\"authors\":\"A. R. Permanasari\",\"doi\":\"10.35313/ijatr.v3i1.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mg/Al Hydrotalcite as the catalyst in isomerization of glucose into fructose was made by coprecipitation of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Operating condition of precipitation including the temperature and pH was determined by Response Surface Method (RSM). The catalyst synthesis was carried out in the mole ratio of Mg/Al 3:1 for 18 h and the catalyst was activated by calcination for 3 h at 500°C. Catalyst characterization was done by FTIR, BET, and XRD. The highest mass product of Hydrotalcite Mg/Al 4.52 g, reached at the precipitation conditions of pH 9 and temperature of 45ºC. The catalytic activity of hydrotalcite Mg/Al was tested by the isomerization of Glucose into Fructose. The highest yield and selectivity were 20.14%, 62.40%, respectively. It was reached in pH 9 and 45ºC. While the highest conversion, 53.47%, was achieved in the pH 11.12 with a precipitation temperature of 45ºC. By the RSM analysis, neither the mass of catalyst product nor the catalytic activity from the isomerization (yield, conversion, and selectivity) were affected significantly by the pH and temperature precipitation.\",\"PeriodicalId\":382187,\"journal\":{\"name\":\"Current Journal: International Journal Applied Technology Research\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Journal: International Journal Applied Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35313/ijatr.v3i1.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Journal: International Journal Applied Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35313/ijatr.v3i1.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用Mg(NO3)2.6H2O和Al(NO3)3.9H2O共沉淀法制备Mg/Al水滑石作为葡萄糖异构化成果糖的催化剂。采用响应面法(RSM)确定了沉淀的操作条件,包括温度和pH。催化剂在Mg/Al 3:1摩尔比下合成18 h,在500℃下煅烧3 h活化。采用FTIR、BET和XRD对催化剂进行了表征。在pH为9、温度为45℃的条件下,水滑石的最大质量产物Mg/Al为4.52 g。通过葡萄糖与果糖的异构化反应,考察了镁铝水滑石的催化活性。收率和选择性最高,分别为20.14%和62.40%。pH值为9,温度为45℃。当pH为11.12,沉淀温度为45℃时,转化率最高,达到53.47%。通过RSM分析,pH和温度沉淀对催化剂产物质量和异构化催化活性(产率、转化率和选择性)均无显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effectiveness of precipitation pH and temperature of Mg/Al Hydrotalcite synthesis on the glucose isomerization
Mg/Al Hydrotalcite as the catalyst in isomerization of glucose into fructose was made by coprecipitation of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Operating condition of precipitation including the temperature and pH was determined by Response Surface Method (RSM). The catalyst synthesis was carried out in the mole ratio of Mg/Al 3:1 for 18 h and the catalyst was activated by calcination for 3 h at 500°C. Catalyst characterization was done by FTIR, BET, and XRD. The highest mass product of Hydrotalcite Mg/Al 4.52 g, reached at the precipitation conditions of pH 9 and temperature of 45ºC. The catalytic activity of hydrotalcite Mg/Al was tested by the isomerization of Glucose into Fructose. The highest yield and selectivity were 20.14%, 62.40%, respectively. It was reached in pH 9 and 45ºC. While the highest conversion, 53.47%, was achieved in the pH 11.12 with a precipitation temperature of 45ºC. By the RSM analysis, neither the mass of catalyst product nor the catalytic activity from the isomerization (yield, conversion, and selectivity) were affected significantly by the pH and temperature precipitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信