{"title":"基于多目标优化的GPC合成参数自动调谐","authors":"Faten. Ben Aicha, F. Bouani, M. Ksouri","doi":"10.1109/SM2ACD.2010.5672348","DOIUrl":null,"url":null,"abstract":"In this paper, a strategy for automatic tuning of predictive controller synthesis parameters based on multi-objective optimization (MOO) is proposed. This strategy integrates the genetic algorithm to generate the synthesis parameters (the prediction horizon, the control horizon and the cost weighting factor) making a compromise between closed loop performances (the overshoot, the variance of the control and the settling time). A simulation example is presented to illustrate the performance of this strategy in the on-line adjustment of generalized predictive control parameters.","PeriodicalId":442381,"journal":{"name":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic tuning of GPC synthesis parameters based on multi-objective optimization\",\"authors\":\"Faten. Ben Aicha, F. Bouani, M. Ksouri\",\"doi\":\"10.1109/SM2ACD.2010.5672348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a strategy for automatic tuning of predictive controller synthesis parameters based on multi-objective optimization (MOO) is proposed. This strategy integrates the genetic algorithm to generate the synthesis parameters (the prediction horizon, the control horizon and the cost weighting factor) making a compromise between closed loop performances (the overshoot, the variance of the control and the settling time). A simulation example is presented to illustrate the performance of this strategy in the on-line adjustment of generalized predictive control parameters.\",\"PeriodicalId\":442381,\"journal\":{\"name\":\"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SM2ACD.2010.5672348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SM2ACD.2010.5672348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic tuning of GPC synthesis parameters based on multi-objective optimization
In this paper, a strategy for automatic tuning of predictive controller synthesis parameters based on multi-objective optimization (MOO) is proposed. This strategy integrates the genetic algorithm to generate the synthesis parameters (the prediction horizon, the control horizon and the cost weighting factor) making a compromise between closed loop performances (the overshoot, the variance of the control and the settling time). A simulation example is presented to illustrate the performance of this strategy in the on-line adjustment of generalized predictive control parameters.