一种更精确、更直接的奇异积分求值方法

M. Hasan, M. A. Huq, M. Rahaman, B. Haque
{"title":"一种更精确、更直接的奇异积分求值方法","authors":"M. Hasan, M. A. Huq, M. Rahaman, B. Haque","doi":"10.13189/UJAM.2015.030304","DOIUrl":null,"url":null,"abstract":"Recently, a straightforward formula has been presented for evaluating singular integrals. Earlier extrapolation technique was used to guess the functional values at the singular points since most of the classical formulae contain both ends points. In this article a more accurate straightforward formula is presented for evaluating singular integrals. The new formula converges faster than others existing formulae. The Romberg integration scheme of this method also converges faster.","PeriodicalId":372283,"journal":{"name":"Universal Journal of Applied Mathematics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A More Accurate and Straightforward Method for Evaluating Singular Integrals\",\"authors\":\"M. Hasan, M. A. Huq, M. Rahaman, B. Haque\",\"doi\":\"10.13189/UJAM.2015.030304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a straightforward formula has been presented for evaluating singular integrals. Earlier extrapolation technique was used to guess the functional values at the singular points since most of the classical formulae contain both ends points. In this article a more accurate straightforward formula is presented for evaluating singular integrals. The new formula converges faster than others existing formulae. The Romberg integration scheme of this method also converges faster.\",\"PeriodicalId\":372283,\"journal\":{\"name\":\"Universal Journal of Applied Mathematics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJAM.2015.030304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJAM.2015.030304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近,提出了一个简单的计算奇异积分的公式。由于大多数经典公式都包含两个端点,早期的外推技术主要用于猜测奇异点处的泛函值。本文给出了计算奇异积分的一个更精确、更直接的公式。新公式的收敛速度比其他现有公式快。该方法的Romberg积分格式收敛速度较快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A More Accurate and Straightforward Method for Evaluating Singular Integrals
Recently, a straightforward formula has been presented for evaluating singular integrals. Earlier extrapolation technique was used to guess the functional values at the singular points since most of the classical formulae contain both ends points. In this article a more accurate straightforward formula is presented for evaluating singular integrals. The new formula converges faster than others existing formulae. The Romberg integration scheme of this method also converges faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信