具有同构定理对偶的环

I. Liaqat, Kaushef Salamat
{"title":"具有同构定理对偶的环","authors":"I. Liaqat, Kaushef Salamat","doi":"10.15864/JMSCM.2104","DOIUrl":null,"url":null,"abstract":"A ring R satisfies the dual of the isomorphism theorem if R/Ra≅ 1(a) for all elements a of R, where 1(a) denotes the left annihilator. We call these rings left morphic. Examples include all unit regular rings and certain left uniserial local rings. We show that every left morphic\n ring is right principally injective, and use this to characterize the left perfect, right and left morphic rings.","PeriodicalId":270881,"journal":{"name":"Journal of Mathematical Sciences & Computational Mathematics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"RINGS WITH THE DUAL OF THE ISOMORPHISM THEOREM\",\"authors\":\"I. Liaqat, Kaushef Salamat\",\"doi\":\"10.15864/JMSCM.2104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A ring R satisfies the dual of the isomorphism theorem if R/Ra≅ 1(a) for all elements a of R, where 1(a) denotes the left annihilator. We call these rings left morphic. Examples include all unit regular rings and certain left uniserial local rings. We show that every left morphic\\n ring is right principally injective, and use this to characterize the left perfect, right and left morphic rings.\",\"PeriodicalId\":270881,\"journal\":{\"name\":\"Journal of Mathematical Sciences & Computational Mathematics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Sciences & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15864/JMSCM.2104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Sciences & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15864/JMSCM.2104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

环R满足对偶的同构定理,如果R/Ra = 1(A)对于R中的所有元素A,其中1(A)表示左湮灭子。我们称这些环为左态环。例子包括所有单位正则环和某些左单列局部环。我们证明了每一个左态环都是右主内射,并以此来刻画左完全、右和左态环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RINGS WITH THE DUAL OF THE ISOMORPHISM THEOREM
A ring R satisfies the dual of the isomorphism theorem if R/Ra≅ 1(a) for all elements a of R, where 1(a) denotes the left annihilator. We call these rings left morphic. Examples include all unit regular rings and certain left uniserial local rings. We show that every left morphic ring is right principally injective, and use this to characterize the left perfect, right and left morphic rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信