基于GPU的高光谱遥感分类处理并行计算研究

Yaohua Luo, Ke Guo, Da-Ming Wang, Zhongping Tao, Maozhi Wang, Z. Wang
{"title":"基于GPU的高光谱遥感分类处理并行计算研究","authors":"Yaohua Luo, Ke Guo, Da-Ming Wang, Zhongping Tao, Maozhi Wang, Z. Wang","doi":"10.1109/ICCSEE.2012.240","DOIUrl":null,"url":null,"abstract":"Hyper spectral remote sensing has a great application in resources, environment, urban development and ecological balance and other aspects, one of the most important fields is for precise classification of features. Due to the hyper spectral remote sensing data has the characteristics of large data volume, the specific operation in the presence of long processing time problem. This paper focus on SAM algorithm and realize optimization based on the GPU parallel framework, and makes a system experiment on hyper spectral remote sensing images to prove the validity of this method.","PeriodicalId":132465,"journal":{"name":"2012 International Conference on Computer Science and Electronics Engineering","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hyperspectral Remote Sensing Classification Processing Parallel Computing Research Based on GPU\",\"authors\":\"Yaohua Luo, Ke Guo, Da-Ming Wang, Zhongping Tao, Maozhi Wang, Z. Wang\",\"doi\":\"10.1109/ICCSEE.2012.240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyper spectral remote sensing has a great application in resources, environment, urban development and ecological balance and other aspects, one of the most important fields is for precise classification of features. Due to the hyper spectral remote sensing data has the characteristics of large data volume, the specific operation in the presence of long processing time problem. This paper focus on SAM algorithm and realize optimization based on the GPU parallel framework, and makes a system experiment on hyper spectral remote sensing images to prove the validity of this method.\",\"PeriodicalId\":132465,\"journal\":{\"name\":\"2012 International Conference on Computer Science and Electronics Engineering\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Computer Science and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSEE.2012.240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Computer Science and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSEE.2012.240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

高光谱遥感在资源、环境、城市发展和生态平衡等方面有着广泛的应用,其中最重要的一个领域就是地物的精确分类。由于高光谱遥感数据具有数据量大的特点,在具体操作中存在处理时间长的问题。本文重点研究了基于GPU并行框架的SAM算法并实现了优化,并在高光谱遥感图像上进行了系统实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral Remote Sensing Classification Processing Parallel Computing Research Based on GPU
Hyper spectral remote sensing has a great application in resources, environment, urban development and ecological balance and other aspects, one of the most important fields is for precise classification of features. Due to the hyper spectral remote sensing data has the characteristics of large data volume, the specific operation in the presence of long processing time problem. This paper focus on SAM algorithm and realize optimization based on the GPU parallel framework, and makes a system experiment on hyper spectral remote sensing images to prove the validity of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信