{"title":"基于卷积神经网络的特征级传感器数据深度网格融合","authors":"G. Balázs, W. Stechele","doi":"10.1109/ICCVE45908.2019.8965213","DOIUrl":null,"url":null,"abstract":"This paper investigates neural network architectures that fuse feature-level data of radar and vision sensors in order to improve automotive environment perception for advanced driver assistance systems. Fusion is performed with occupancy grids, which incorporate sensor-specific information mapped from their individual detection lists. The fusion step is evaluated on three types of neural networks: (1) fully convolutional, (2) auto-encoder and (3) auto-encoder with skipped connections. These networks are trained to fuse radar and camera occupancy grids with the ground truth obtained from lidar scans. A detailed analysis of network architectures and parameters is performed. Results are compared to classical Bayesian occupancy fusion on typical evaluation metrics for pixel-wise classification tasks, like intersection over union and pixel accuracy. This paper shows that it is possible to perform grid fusion of feature-level sensor data with the proposed system architecture. Especially the auto-encoder architectures show significant improvements in evaluation metrics compared to classical Bayesian fusion method.","PeriodicalId":384049,"journal":{"name":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Grid Fusion of Feature-Level Sensor Data with Convolutional Neural Networks\",\"authors\":\"G. Balázs, W. Stechele\",\"doi\":\"10.1109/ICCVE45908.2019.8965213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates neural network architectures that fuse feature-level data of radar and vision sensors in order to improve automotive environment perception for advanced driver assistance systems. Fusion is performed with occupancy grids, which incorporate sensor-specific information mapped from their individual detection lists. The fusion step is evaluated on three types of neural networks: (1) fully convolutional, (2) auto-encoder and (3) auto-encoder with skipped connections. These networks are trained to fuse radar and camera occupancy grids with the ground truth obtained from lidar scans. A detailed analysis of network architectures and parameters is performed. Results are compared to classical Bayesian occupancy fusion on typical evaluation metrics for pixel-wise classification tasks, like intersection over union and pixel accuracy. This paper shows that it is possible to perform grid fusion of feature-level sensor data with the proposed system architecture. Especially the auto-encoder architectures show significant improvements in evaluation metrics compared to classical Bayesian fusion method.\",\"PeriodicalId\":384049,\"journal\":{\"name\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVE45908.2019.8965213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE45908.2019.8965213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Grid Fusion of Feature-Level Sensor Data with Convolutional Neural Networks
This paper investigates neural network architectures that fuse feature-level data of radar and vision sensors in order to improve automotive environment perception for advanced driver assistance systems. Fusion is performed with occupancy grids, which incorporate sensor-specific information mapped from their individual detection lists. The fusion step is evaluated on three types of neural networks: (1) fully convolutional, (2) auto-encoder and (3) auto-encoder with skipped connections. These networks are trained to fuse radar and camera occupancy grids with the ground truth obtained from lidar scans. A detailed analysis of network architectures and parameters is performed. Results are compared to classical Bayesian occupancy fusion on typical evaluation metrics for pixel-wise classification tasks, like intersection over union and pixel accuracy. This paper shows that it is possible to perform grid fusion of feature-level sensor data with the proposed system architecture. Especially the auto-encoder architectures show significant improvements in evaluation metrics compared to classical Bayesian fusion method.