基于自适应长度Viterbi算法的HMM手写单词识别

Ying He, M.-Y. Chen, A. Kundu
{"title":"基于自适应长度Viterbi算法的HMM手写单词识别","authors":"Ying He, M.-Y. Chen, A. Kundu","doi":"10.1109/ICASSP.1992.226253","DOIUrl":null,"url":null,"abstract":"The authors have developed a handwritten word recognition scheme based on a single contextual, discrete symbol probability hidden Markov model (HMM) incorporated with an adaptive length Viterbi algorithm. This work attempts to extend the earlier HMM scheme for naturally segmented word recognition to cursive and nonsegmented word recognition. The algorithm presegments the script into characters and/or fractions of characters, dynamically selects the correct segmentation points, determines the word length, and recognizes the word according to the maximum path probability. The HMM is on top of, but independent of, script segmentation and character recognition techniques, and therefore leaves room for further improvement. The experiments have shown promising results and directions for further improvement.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Handwritten word recognition using HMM with adaptive length Viterbi algorithm\",\"authors\":\"Ying He, M.-Y. Chen, A. Kundu\",\"doi\":\"10.1109/ICASSP.1992.226253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors have developed a handwritten word recognition scheme based on a single contextual, discrete symbol probability hidden Markov model (HMM) incorporated with an adaptive length Viterbi algorithm. This work attempts to extend the earlier HMM scheme for naturally segmented word recognition to cursive and nonsegmented word recognition. The algorithm presegments the script into characters and/or fractions of characters, dynamically selects the correct segmentation points, determines the word length, and recognizes the word according to the maximum path probability. The HMM is on top of, but independent of, script segmentation and character recognition techniques, and therefore leaves room for further improvement. The experiments have shown promising results and directions for further improvement.<<ETX>>\",\"PeriodicalId\":163713,\"journal\":{\"name\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1992.226253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.226253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

作者开发了一种基于单一上下文、离散符号概率隐马尔可夫模型(HMM)和自适应长度Viterbi算法的手写单词识别方案。这项工作试图将早期的HMM方案用于自然分词识别扩展到草书和非分词识别。该算法将脚本预切分为字符和/或字符片段,动态选择正确的切分点,确定单词长度,并根据最大路径概率进行单词识别。HMM是在脚本分割和字符识别技术之上,但独立于它们,因此留下了进一步改进的空间。实验显示了良好的结果和进一步改进的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwritten word recognition using HMM with adaptive length Viterbi algorithm
The authors have developed a handwritten word recognition scheme based on a single contextual, discrete symbol probability hidden Markov model (HMM) incorporated with an adaptive length Viterbi algorithm. This work attempts to extend the earlier HMM scheme for naturally segmented word recognition to cursive and nonsegmented word recognition. The algorithm presegments the script into characters and/or fractions of characters, dynamically selects the correct segmentation points, determines the word length, and recognizes the word according to the maximum path probability. The HMM is on top of, but independent of, script segmentation and character recognition techniques, and therefore leaves room for further improvement. The experiments have shown promising results and directions for further improvement.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信