Aroosa Yaqoob, Abdul Basit, Abdul Rahman, Abdul Hannan, Kaleem Ullah
{"title":"基于视觉变压器的高分辨率计算机断层扫描检测COVID-19","authors":"Aroosa Yaqoob, Abdul Basit, Abdul Rahman, Abdul Hannan, Kaleem Ullah","doi":"10.1109/FIT57066.2022.00025","DOIUrl":null,"url":null,"abstract":"In the current pandemic, precise and early diagnose of COVID-19 patient remained a crucial task for control of the spread of the COVID-19 virus in the healthcare sector. Due to the unexpected spike in COVID-19 cases, the majority of countries have experienced scarcity and poor testing rate. Chest X-rays and CT scans have been discussed in the literature as a viable source of testing for COVID-19 disease in patients. However, manually reviewing the CT and x-ray images is time-consuming and prone to error. Taking account into these constraints and the improvements in data science, this research proposed a Vision Transformer-based deep learning pipeline for COVID-19 diagnose from CT-based imaging. Due to the scarcity of large data sets, three open-source datasets of CT scans are pooled to generate 27370 images of covid and non- covid individuals. The proposed vision transformer-based model accurately diagnoses COVID-19 from normal chest CT images with an accuracy of 98 percent. This research would assist the practitioner, radiologist and doctors in early and accurate diagnose of COVID-19.","PeriodicalId":102958,"journal":{"name":"2022 International Conference on Frontiers of Information Technology (FIT)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of COVID-19 in High Resolution Computed Tomography Using Vision Transformer\",\"authors\":\"Aroosa Yaqoob, Abdul Basit, Abdul Rahman, Abdul Hannan, Kaleem Ullah\",\"doi\":\"10.1109/FIT57066.2022.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current pandemic, precise and early diagnose of COVID-19 patient remained a crucial task for control of the spread of the COVID-19 virus in the healthcare sector. Due to the unexpected spike in COVID-19 cases, the majority of countries have experienced scarcity and poor testing rate. Chest X-rays and CT scans have been discussed in the literature as a viable source of testing for COVID-19 disease in patients. However, manually reviewing the CT and x-ray images is time-consuming and prone to error. Taking account into these constraints and the improvements in data science, this research proposed a Vision Transformer-based deep learning pipeline for COVID-19 diagnose from CT-based imaging. Due to the scarcity of large data sets, three open-source datasets of CT scans are pooled to generate 27370 images of covid and non- covid individuals. The proposed vision transformer-based model accurately diagnoses COVID-19 from normal chest CT images with an accuracy of 98 percent. This research would assist the practitioner, radiologist and doctors in early and accurate diagnose of COVID-19.\",\"PeriodicalId\":102958,\"journal\":{\"name\":\"2022 International Conference on Frontiers of Information Technology (FIT)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Frontiers of Information Technology (FIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIT57066.2022.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Frontiers of Information Technology (FIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT57066.2022.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of COVID-19 in High Resolution Computed Tomography Using Vision Transformer
In the current pandemic, precise and early diagnose of COVID-19 patient remained a crucial task for control of the spread of the COVID-19 virus in the healthcare sector. Due to the unexpected spike in COVID-19 cases, the majority of countries have experienced scarcity and poor testing rate. Chest X-rays and CT scans have been discussed in the literature as a viable source of testing for COVID-19 disease in patients. However, manually reviewing the CT and x-ray images is time-consuming and prone to error. Taking account into these constraints and the improvements in data science, this research proposed a Vision Transformer-based deep learning pipeline for COVID-19 diagnose from CT-based imaging. Due to the scarcity of large data sets, three open-source datasets of CT scans are pooled to generate 27370 images of covid and non- covid individuals. The proposed vision transformer-based model accurately diagnoses COVID-19 from normal chest CT images with an accuracy of 98 percent. This research would assist the practitioner, radiologist and doctors in early and accurate diagnose of COVID-19.