虹膜活性检测大赛(LivDet-Iris) - 2020年版

Priyanka Das, Joseph McGrath, Zhaoyuan Fang, Aidan Boyd, Ganghee Jang, A. Mohammadi, Sandip Purnapatra, David Yambay, S. Marcel, Mateusz Trokielewicz, P. Maciejewicz, K. Bowyer, A. Czajka, S. Schuckers, Juan E. Tapia, Sebastián González, Meiling Fang, N. Damer, F. Boutros, Arjan Kuijper, Renu Sharma, Cunjian Chen, A. Ross
{"title":"虹膜活性检测大赛(LivDet-Iris) - 2020年版","authors":"Priyanka Das, Joseph McGrath, Zhaoyuan Fang, Aidan Boyd, Ganghee Jang, A. Mohammadi, Sandip Purnapatra, David Yambay, S. Marcel, Mateusz Trokielewicz, P. Maciejewicz, K. Bowyer, A. Czajka, S. Schuckers, Juan E. Tapia, Sebastián González, Meiling Fang, N. Damer, F. Boutros, Arjan Kuijper, Renu Sharma, Cunjian Chen, A. Ross","doi":"10.1109/IJCB48548.2020.9304941","DOIUrl":null,"url":null,"abstract":"Launched in 2013, LivDet-Iris is an international competition series open to academia and industry with the aim to assess and report advances in iris Presentation Attack Detection (PAD). This paper presents results from the fourth competition of the series: LivDet-Iris 2020. This year's competition introduced several novel elements: (a) incorporated new types of attacks (samples displayed on a screen, cadaver eyes and prosthetic eyes), (b) initiated LivDet-Iris as an on-going effort, with a testing protocol available now to everyone via the Biometrics Evaluation and Testing (BEAT)* open-source platform to facilitate reproducibility and benchmarking of new algorithms continuously, and (c) performance comparison of the submitted entries with three baseline methods (offered by the University of Notre Dame and Michigan State University), and three open-source iris PAD methods available in the public domain. The best performing entry to the competition reported a weighted average APCER of 59.10% and a BPCER of 0.46% over all five attack types. This paper serves as the latest evaluation of iris PAD on a large spectrum of presentation attack instruments.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Iris Liveness Detection Competition (LivDet-Iris) - The 2020 Edition\",\"authors\":\"Priyanka Das, Joseph McGrath, Zhaoyuan Fang, Aidan Boyd, Ganghee Jang, A. Mohammadi, Sandip Purnapatra, David Yambay, S. Marcel, Mateusz Trokielewicz, P. Maciejewicz, K. Bowyer, A. Czajka, S. Schuckers, Juan E. Tapia, Sebastián González, Meiling Fang, N. Damer, F. Boutros, Arjan Kuijper, Renu Sharma, Cunjian Chen, A. Ross\",\"doi\":\"10.1109/IJCB48548.2020.9304941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Launched in 2013, LivDet-Iris is an international competition series open to academia and industry with the aim to assess and report advances in iris Presentation Attack Detection (PAD). This paper presents results from the fourth competition of the series: LivDet-Iris 2020. This year's competition introduced several novel elements: (a) incorporated new types of attacks (samples displayed on a screen, cadaver eyes and prosthetic eyes), (b) initiated LivDet-Iris as an on-going effort, with a testing protocol available now to everyone via the Biometrics Evaluation and Testing (BEAT)* open-source platform to facilitate reproducibility and benchmarking of new algorithms continuously, and (c) performance comparison of the submitted entries with three baseline methods (offered by the University of Notre Dame and Michigan State University), and three open-source iris PAD methods available in the public domain. The best performing entry to the competition reported a weighted average APCER of 59.10% and a BPCER of 0.46% over all five attack types. This paper serves as the latest evaluation of iris PAD on a large spectrum of presentation attack instruments.\",\"PeriodicalId\":417270,\"journal\":{\"name\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB48548.2020.9304941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

livet - iris于2013年推出,是一项面向学术界和工业界的国际竞赛系列,旨在评估和报告虹膜呈现攻击检测(PAD)的进展。本文介绍了该系列第四场比赛的结果:LivDet-Iris 2020。今年的比赛引入了几个新颖的元素:(a)纳入新的攻击类型(在屏幕上显示的样本,尸体眼睛和假眼),(b)启动livet - iris作为一项持续的努力,现在每个人都可以通过生物识别评估和测试(BEAT)*开源平台获得测试协议,以促进新算法的可重复性和持续基准测试;(c)将提交的作品与三种基线方法(由圣母大学和密歇根州立大学提供)和三种公共领域可用的开源虹膜PAD方法进行性能比较。在所有五种攻击类型中,表现最好的参赛作品的加权平均APCER为59.10%,BPCER为0.46%。本文是对虹膜PAD在众多演示攻击工具中的最新评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iris Liveness Detection Competition (LivDet-Iris) - The 2020 Edition
Launched in 2013, LivDet-Iris is an international competition series open to academia and industry with the aim to assess and report advances in iris Presentation Attack Detection (PAD). This paper presents results from the fourth competition of the series: LivDet-Iris 2020. This year's competition introduced several novel elements: (a) incorporated new types of attacks (samples displayed on a screen, cadaver eyes and prosthetic eyes), (b) initiated LivDet-Iris as an on-going effort, with a testing protocol available now to everyone via the Biometrics Evaluation and Testing (BEAT)* open-source platform to facilitate reproducibility and benchmarking of new algorithms continuously, and (c) performance comparison of the submitted entries with three baseline methods (offered by the University of Notre Dame and Michigan State University), and three open-source iris PAD methods available in the public domain. The best performing entry to the competition reported a weighted average APCER of 59.10% and a BPCER of 0.46% over all five attack types. This paper serves as the latest evaluation of iris PAD on a large spectrum of presentation attack instruments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信