论同伦型论中的Nielsen-Schreier定理

Andrew W. Swan
{"title":"论同伦型论中的Nielsen-Schreier定理","authors":"Andrew W. Swan","doi":"10.46298/lmcs-18(1:18)2022","DOIUrl":null,"url":null,"abstract":"We give a formulation of the Nielsen-Schreier theorem (subgroups of free groups are free) in homotopy type theory using the presentation of groups as pointed connected 1-truncated types. We show the special case of finite index subgroups holds constructively and the full theorem follows from the axiom of choice. We give an example of a boolean infinity topos where our formulation of the theorem does not hold and show a stronger \"untruncated\" version of the theorem is provably false in homotopy type theory.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Nielsen-Schreier Theorem in Homotopy Type Theory\",\"authors\":\"Andrew W. Swan\",\"doi\":\"10.46298/lmcs-18(1:18)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a formulation of the Nielsen-Schreier theorem (subgroups of free groups are free) in homotopy type theory using the presentation of groups as pointed connected 1-truncated types. We show the special case of finite index subgroups holds constructively and the full theorem follows from the axiom of choice. We give an example of a boolean infinity topos where our formulation of the theorem does not hold and show a stronger \\\"untruncated\\\" version of the theorem is provably false in homotopy type theory.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(1:18)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(1:18)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用给定连通1截断型群的表示,给出了同伦型理论中Nielsen-Schreier定理(自由群的子群是自由的)的一个表述。我们证明了有限索引子群的特殊情况构造地成立,并由选择公理推导出了完备定理。我们给出了一个布尔无限拓扑的例子,其中我们的定理公式不成立,并证明了该定理的一个更强的“未截断”版本在同伦类型理论中是可证明的假的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Nielsen-Schreier Theorem in Homotopy Type Theory
We give a formulation of the Nielsen-Schreier theorem (subgroups of free groups are free) in homotopy type theory using the presentation of groups as pointed connected 1-truncated types. We show the special case of finite index subgroups holds constructively and the full theorem follows from the axiom of choice. We give an example of a boolean infinity topos where our formulation of the theorem does not hold and show a stronger "untruncated" version of the theorem is provably false in homotopy type theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信