蒙特卡罗方差减少。重要性抽样技术

Olariu S. Emanuel Florentin
{"title":"蒙特卡罗方差减少。重要性抽样技术","authors":"Olariu S. Emanuel Florentin","doi":"10.1109/SYNASC.2009.56","DOIUrl":null,"url":null,"abstract":"In this paper we investigate some Importance Sampling strategies and we apply them for the first time to the pricing of the spread options. We compare the Least Squares method to the f-divergence method in order to choose the importance sampling functions. Our numerical results reveals that the use of the divergences is frequently less computationally and time costly.","PeriodicalId":286180,"journal":{"name":"2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monte Carlo Variance Reduction. Importance Sampling Techniques\",\"authors\":\"Olariu S. Emanuel Florentin\",\"doi\":\"10.1109/SYNASC.2009.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate some Importance Sampling strategies and we apply them for the first time to the pricing of the spread options. We compare the Least Squares method to the f-divergence method in order to choose the importance sampling functions. Our numerical results reveals that the use of the divergences is frequently less computationally and time costly.\",\"PeriodicalId\":286180,\"journal\":{\"name\":\"2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2009.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2009.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一些重要抽样策略,并首次将其应用于价差期权的定价。我们比较了最小二乘法和f散度法来选择重要抽样函数。我们的数值结果表明,散度的使用往往是计算量少,时间昂贵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monte Carlo Variance Reduction. Importance Sampling Techniques
In this paper we investigate some Importance Sampling strategies and we apply them for the first time to the pricing of the spread options. We compare the Least Squares method to the f-divergence method in order to choose the importance sampling functions. Our numerical results reveals that the use of the divergences is frequently less computationally and time costly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信