{"title":"凸度量空间中太阳的注释","authors":"T. D. Narang, R. Sangeeta","doi":"10.2298/PIM1001139N","DOIUrl":null,"url":null,"abstract":"We prove that in a convex metric space (��, �� ), an existence set �� having a lower semi continuous metric projection is a �� -sun and in a complete �� -space, a Chebyshev set �� with a continuous metric projection is a �� -sun as well as almost convex.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A NOTE ON SUNS IN CONVEX METRIC SPACES\",\"authors\":\"T. D. Narang, R. Sangeeta\",\"doi\":\"10.2298/PIM1001139N\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that in a convex metric space (��, �� ), an existence set �� having a lower semi continuous metric projection is a �� -sun and in a complete �� -space, a Chebyshev set �� with a continuous metric projection is a �� -sun as well as almost convex.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1001139N\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1001139N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that in a convex metric space (��, �� ), an existence set �� having a lower semi continuous metric projection is a �� -sun and in a complete �� -space, a Chebyshev set �� with a continuous metric projection is a �� -sun as well as almost convex.