{"title":"基于智能体的系统中动态组织智能体的平台","authors":"Chunsheng Li, Zili Zhang, Chengqi Zhang","doi":"10.1109/IAT.2004.1342994","DOIUrl":null,"url":null,"abstract":"In most agent-based systems, different middle agents are employed to increase their flexibility. However, there are still three issues remain unsolved. In centralized architecture with single middle agent, the middle agent itself is a bottleneck and suffers from single point failure; middle agents in distributed architecture lack capability of dynamic organization of agents; The reliability is not strong because of the single point failure and lack of effective architecture. We introduce a platform with ring architectural model to solve all above problems. In the platform, multiple middle agents are dynamically supported for solving the first problem. For solving the second problem, middle agents dynamically manage the registration and cancellation of service provider agents and application teams, each of which includes a set of closely interacting requester agents to complete an independent task. Redundancy middle agent technique is proposed for solving the third problem. All middle agents are of the feature of proliferation and self-cancellation according to the sensory inputs from their environment. For organizing the middle agents effectively, a ring architectural model is proposed. We demonstrate the applicability of the platform by its application and present experimental evidence that the platform is flexible and robust.","PeriodicalId":281008,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A platform for dynamic organization of agents in agent-based systems\",\"authors\":\"Chunsheng Li, Zili Zhang, Chengqi Zhang\",\"doi\":\"10.1109/IAT.2004.1342994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In most agent-based systems, different middle agents are employed to increase their flexibility. However, there are still three issues remain unsolved. In centralized architecture with single middle agent, the middle agent itself is a bottleneck and suffers from single point failure; middle agents in distributed architecture lack capability of dynamic organization of agents; The reliability is not strong because of the single point failure and lack of effective architecture. We introduce a platform with ring architectural model to solve all above problems. In the platform, multiple middle agents are dynamically supported for solving the first problem. For solving the second problem, middle agents dynamically manage the registration and cancellation of service provider agents and application teams, each of which includes a set of closely interacting requester agents to complete an independent task. Redundancy middle agent technique is proposed for solving the third problem. All middle agents are of the feature of proliferation and self-cancellation according to the sensory inputs from their environment. For organizing the middle agents effectively, a ring architectural model is proposed. We demonstrate the applicability of the platform by its application and present experimental evidence that the platform is flexible and robust.\",\"PeriodicalId\":281008,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAT.2004.1342994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAT.2004.1342994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A platform for dynamic organization of agents in agent-based systems
In most agent-based systems, different middle agents are employed to increase their flexibility. However, there are still three issues remain unsolved. In centralized architecture with single middle agent, the middle agent itself is a bottleneck and suffers from single point failure; middle agents in distributed architecture lack capability of dynamic organization of agents; The reliability is not strong because of the single point failure and lack of effective architecture. We introduce a platform with ring architectural model to solve all above problems. In the platform, multiple middle agents are dynamically supported for solving the first problem. For solving the second problem, middle agents dynamically manage the registration and cancellation of service provider agents and application teams, each of which includes a set of closely interacting requester agents to complete an independent task. Redundancy middle agent technique is proposed for solving the third problem. All middle agents are of the feature of proliferation and self-cancellation according to the sensory inputs from their environment. For organizing the middle agents effectively, a ring architectural model is proposed. We demonstrate the applicability of the platform by its application and present experimental evidence that the platform is flexible and robust.