Jieyang Chen, Xin Liang, Kai Zhao, H. Sabzi, L. Bhuyan, Zizhong Chen
{"title":"提高CPU-GPU异构系统单边矩阵分解的节能性能","authors":"Jieyang Chen, Xin Liang, Kai Zhao, H. Sabzi, L. Bhuyan, Zizhong Chen","doi":"10.1145/3572848.3577496","DOIUrl":null,"url":null,"abstract":"One-sided dense matrix decompositions (e.g., Cholesky, LU, and QR) are the key components in scientific computing in many different fields. Although their design has been highly optimized for modern processors, they still consume a considerable amount of energy. As CPU-GPU heterogeneous systems are commonly used for matrix decompositions, in this work, we aim to further improve the energy saving of onesided matrix decompositions on CPU-GPU heterogeneous systems. We first build an Algorithm-Based Fault Tolerance protected overclocking technique (ABFT-OC) to enable us to exploit reliable overclocking for key matrix decomposition operations. Then, we design an energy-saving matrix decomposition framework, Bi-directional Slack Reclamation (BSR), that can intelligently combine the capability provided by ABFT-OC and DVFS to maximize energy saving and maintain performance and reliability. Experiments show that BSR is able to save up to 11.7% more energy compared with the current best energy saving optimization approach with no performance degradation and up to 14.1% Energy×Delay2 reduction. Also, BSR enables the Pareto efficient performance-energy trade-off, which is able to provide up to 1.43× performance improvement without costing extra energy.","PeriodicalId":233744,"journal":{"name":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Energy Saving of One-Sided Matrix Decompositions on CPU-GPU Heterogeneous Systems\",\"authors\":\"Jieyang Chen, Xin Liang, Kai Zhao, H. Sabzi, L. Bhuyan, Zizhong Chen\",\"doi\":\"10.1145/3572848.3577496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One-sided dense matrix decompositions (e.g., Cholesky, LU, and QR) are the key components in scientific computing in many different fields. Although their design has been highly optimized for modern processors, they still consume a considerable amount of energy. As CPU-GPU heterogeneous systems are commonly used for matrix decompositions, in this work, we aim to further improve the energy saving of onesided matrix decompositions on CPU-GPU heterogeneous systems. We first build an Algorithm-Based Fault Tolerance protected overclocking technique (ABFT-OC) to enable us to exploit reliable overclocking for key matrix decomposition operations. Then, we design an energy-saving matrix decomposition framework, Bi-directional Slack Reclamation (BSR), that can intelligently combine the capability provided by ABFT-OC and DVFS to maximize energy saving and maintain performance and reliability. Experiments show that BSR is able to save up to 11.7% more energy compared with the current best energy saving optimization approach with no performance degradation and up to 14.1% Energy×Delay2 reduction. Also, BSR enables the Pareto efficient performance-energy trade-off, which is able to provide up to 1.43× performance improvement without costing extra energy.\",\"PeriodicalId\":233744,\"journal\":{\"name\":\"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572848.3577496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572848.3577496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Energy Saving of One-Sided Matrix Decompositions on CPU-GPU Heterogeneous Systems
One-sided dense matrix decompositions (e.g., Cholesky, LU, and QR) are the key components in scientific computing in many different fields. Although their design has been highly optimized for modern processors, they still consume a considerable amount of energy. As CPU-GPU heterogeneous systems are commonly used for matrix decompositions, in this work, we aim to further improve the energy saving of onesided matrix decompositions on CPU-GPU heterogeneous systems. We first build an Algorithm-Based Fault Tolerance protected overclocking technique (ABFT-OC) to enable us to exploit reliable overclocking for key matrix decomposition operations. Then, we design an energy-saving matrix decomposition framework, Bi-directional Slack Reclamation (BSR), that can intelligently combine the capability provided by ABFT-OC and DVFS to maximize energy saving and maintain performance and reliability. Experiments show that BSR is able to save up to 11.7% more energy compared with the current best energy saving optimization approach with no performance degradation and up to 14.1% Energy×Delay2 reduction. Also, BSR enables the Pareto efficient performance-energy trade-off, which is able to provide up to 1.43× performance improvement without costing extra energy.