基于hmm的自适应概率轻弹键盘

Toshiyuki Hagiya, T. Kato
{"title":"基于hmm的自适应概率轻弹键盘","authors":"Toshiyuki Hagiya, T. Kato","doi":"10.1145/2451176.2451205","DOIUrl":null,"url":null,"abstract":"To provide an accurate and user-adaptable software keyboard for touchscreens, we propose a probabilistic flick keyboard based on HMMs. This keyboard can reduce the input error by taking the time series of the actual touch position into consideration and by user adaptation. We evaluated performance of the HMM-based flick keyboard and MLLR adaptation. Experimental results showed that a user-dependent model reduced the error rate by 28.2%. In a practical setting, MLLR user adaptation with only 10 words reduced the error rate by 16.5% and increased typing speed by 10.5%.","PeriodicalId":253850,"journal":{"name":"IUI '13 Companion","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptable probabilistic flick keyboard based on HMMs\",\"authors\":\"Toshiyuki Hagiya, T. Kato\",\"doi\":\"10.1145/2451176.2451205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To provide an accurate and user-adaptable software keyboard for touchscreens, we propose a probabilistic flick keyboard based on HMMs. This keyboard can reduce the input error by taking the time series of the actual touch position into consideration and by user adaptation. We evaluated performance of the HMM-based flick keyboard and MLLR adaptation. Experimental results showed that a user-dependent model reduced the error rate by 28.2%. In a practical setting, MLLR user adaptation with only 10 words reduced the error rate by 16.5% and increased typing speed by 10.5%.\",\"PeriodicalId\":253850,\"journal\":{\"name\":\"IUI '13 Companion\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUI '13 Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2451176.2451205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI '13 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451176.2451205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提供一种精确的、用户适应性强的触摸屏软件键盘,我们提出了一种基于hmm的概率轻弹键盘。该键盘通过考虑实际触摸位置的时间序列和用户自适应来减少输入误差。我们评估了基于hmm的轻弹键盘和MLLR自适应的性能。实验结果表明,用户依赖模型将错误率降低了28.2%。在实际设置中,仅使用10个单词的MLLR用户适配使错误率降低了16.5%,打字速度提高了10.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptable probabilistic flick keyboard based on HMMs
To provide an accurate and user-adaptable software keyboard for touchscreens, we propose a probabilistic flick keyboard based on HMMs. This keyboard can reduce the input error by taking the time series of the actual touch position into consideration and by user adaptation. We evaluated performance of the HMM-based flick keyboard and MLLR adaptation. Experimental results showed that a user-dependent model reduced the error rate by 28.2%. In a practical setting, MLLR user adaptation with only 10 words reduced the error rate by 16.5% and increased typing speed by 10.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信