{"title":"用群启发式学习避障格路径:探索有序树的双射","authors":"V. Parque","doi":"10.1109/CEC55065.2022.9870344","DOIUrl":null,"url":null,"abstract":"Lattice paths are functional entities that model efficient navigation in discrete/grid maps. This paper presents a new scheme to generate collision-free lattice paths with utmost efficiency using the bijective property to rooted ordered trees, rendering a one-dimensional search problem. Our computational studies using ten state-of-the-art and relevant nature-inspired swarm heuristics in navigation scenarios with obstacles with convex and non-convex geometry show the practical feasibility and efficiency in rendering collision-free lattice paths. We believe our scheme may find use in devising fast algorithms for planning and combinatorial optimization in discrete maps.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Obstacle-Avoiding Lattice Paths using Swarm Heuristics: Exploring the Bijection to Ordered Trees\",\"authors\":\"V. Parque\",\"doi\":\"10.1109/CEC55065.2022.9870344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lattice paths are functional entities that model efficient navigation in discrete/grid maps. This paper presents a new scheme to generate collision-free lattice paths with utmost efficiency using the bijective property to rooted ordered trees, rendering a one-dimensional search problem. Our computational studies using ten state-of-the-art and relevant nature-inspired swarm heuristics in navigation scenarios with obstacles with convex and non-convex geometry show the practical feasibility and efficiency in rendering collision-free lattice paths. We believe our scheme may find use in devising fast algorithms for planning and combinatorial optimization in discrete maps.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Obstacle-Avoiding Lattice Paths using Swarm Heuristics: Exploring the Bijection to Ordered Trees
Lattice paths are functional entities that model efficient navigation in discrete/grid maps. This paper presents a new scheme to generate collision-free lattice paths with utmost efficiency using the bijective property to rooted ordered trees, rendering a one-dimensional search problem. Our computational studies using ten state-of-the-art and relevant nature-inspired swarm heuristics in navigation scenarios with obstacles with convex and non-convex geometry show the practical feasibility and efficiency in rendering collision-free lattice paths. We believe our scheme may find use in devising fast algorithms for planning and combinatorial optimization in discrete maps.