利用Gabor变换进行形状表征

R. M. Cesar, L. Costa
{"title":"利用Gabor变换进行形状表征","authors":"R. M. Cesar, L. Costa","doi":"10.1109/DSPWS.1996.555499","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel framework for 2D shape analysis from its outline by using the Gabor transform (GT). The shape's boundary is represented by a complex signal, which is analyzed by the GT. Three automatic methods for analyzing the GT representation are discussed. Experimental results have shown that the GT can be used in the identification of dominant points as well as contour regions presenting periodic patterns (both deterministic and statistic patterns). Some results for synthetic and real images are presented and discussed.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Shape characterization by using the Gabor transform\",\"authors\":\"R. M. Cesar, L. Costa\",\"doi\":\"10.1109/DSPWS.1996.555499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel framework for 2D shape analysis from its outline by using the Gabor transform (GT). The shape's boundary is represented by a complex signal, which is analyzed by the GT. Three automatic methods for analyzing the GT representation are discussed. Experimental results have shown that the GT can be used in the identification of dominant points as well as contour regions presenting periodic patterns (both deterministic and statistic patterns). Some results for synthetic and real images are presented and discussed.\",\"PeriodicalId\":131323,\"journal\":{\"name\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSPWS.1996.555499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种利用Gabor变换(GT)从轮廓出发进行二维形状分析的新框架。形状边界用一个复杂信号表示,用GT对其进行分析,讨论了三种自动分析GT表示的方法。实验结果表明,该方法既可用于识别优势点,也可用于识别具有周期性模式(确定性模式和统计模式)的轮廓区域。给出并讨论了合成图像和真实图像的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape characterization by using the Gabor transform
This paper introduces a novel framework for 2D shape analysis from its outline by using the Gabor transform (GT). The shape's boundary is represented by a complex signal, which is analyzed by the GT. Three automatic methods for analyzing the GT representation are discussed. Experimental results have shown that the GT can be used in the identification of dominant points as well as contour regions presenting periodic patterns (both deterministic and statistic patterns). Some results for synthetic and real images are presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信