基于像素和运动矢量的全局运动估计在摄像机运动表征中的评价

M. Haller, A. Krutz, T. Sikora
{"title":"基于像素和运动矢量的全局运动估计在摄像机运动表征中的评价","authors":"M. Haller, A. Krutz, T. Sikora","doi":"10.1109/WIAMIS.2009.5031429","DOIUrl":null,"url":null,"abstract":"Pixel-based and motion vector-based global motion estimation (GME) techniques are evaluated in this paper with an automatic system for camera motion characterization. First, the GME techniques are compared with a frame-by-frame PNSR measurement using five video sequences. The best motion vector-based GME method is then evaluated together with a common and a simplified pixel-based GME technique for camera motion characterization. For this, selected unedited videos from the TRECVid 2005 BBC rushes corpus are used. We evaluate how the estimation accuracy of global motion parameters affects the results for camera motion characterization in terms of retrieval measures. The results for this characterization show that the simplified pixel-based GME technique obtains results that are comparable with the common pixel-based GME method, and outperforms significantly the results of an earlier proposed motion vector-based GME approach.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Evaluation of pixel- and motion vector-based global motion estimation for camera motion characterization\",\"authors\":\"M. Haller, A. Krutz, T. Sikora\",\"doi\":\"10.1109/WIAMIS.2009.5031429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pixel-based and motion vector-based global motion estimation (GME) techniques are evaluated in this paper with an automatic system for camera motion characterization. First, the GME techniques are compared with a frame-by-frame PNSR measurement using five video sequences. The best motion vector-based GME method is then evaluated together with a common and a simplified pixel-based GME technique for camera motion characterization. For this, selected unedited videos from the TRECVid 2005 BBC rushes corpus are used. We evaluate how the estimation accuracy of global motion parameters affects the results for camera motion characterization in terms of retrieval measures. The results for this characterization show that the simplified pixel-based GME technique obtains results that are comparable with the common pixel-based GME method, and outperforms significantly the results of an earlier proposed motion vector-based GME approach.\",\"PeriodicalId\":233839,\"journal\":{\"name\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2009.5031429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

基于像素和基于运动矢量的全局运动估计(GME)技术在摄像机运动表征的自动系统中得到了评价。首先,将GME技术与使用五个视频序列的逐帧PNSR测量进行比较。然后,将基于运动矢量的最佳GME方法与通用的和简化的基于像素的GME技术一起用于摄像机运动表征。为此,从TRECVid 2005 BBC快讯语料库中选择了未编辑的视频。我们评估了全局运动参数的估计精度如何影响相机运动表征的检索措施的结果。该表征的结果表明,简化的基于像素的GME技术获得的结果与常见的基于像素的GME方法相当,并且显著优于先前提出的基于运动矢量的GME方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of pixel- and motion vector-based global motion estimation for camera motion characterization
Pixel-based and motion vector-based global motion estimation (GME) techniques are evaluated in this paper with an automatic system for camera motion characterization. First, the GME techniques are compared with a frame-by-frame PNSR measurement using five video sequences. The best motion vector-based GME method is then evaluated together with a common and a simplified pixel-based GME technique for camera motion characterization. For this, selected unedited videos from the TRECVid 2005 BBC rushes corpus are used. We evaluate how the estimation accuracy of global motion parameters affects the results for camera motion characterization in terms of retrieval measures. The results for this characterization show that the simplified pixel-based GME technique obtains results that are comparable with the common pixel-based GME method, and outperforms significantly the results of an earlier proposed motion vector-based GME approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信