OSPEN:一个用于模拟神经形态硬件的开源平台

A. Ghani, T. Dowrick, L. McDaid
{"title":"OSPEN:一个用于模拟神经形态硬件的开源平台","authors":"A. Ghani, T. Dowrick, L. McDaid","doi":"10.11591/ijres.v12.i1.pp1-8","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a framework that entails a bottom-up approach to accelerate research, development, and verification of neuro-inspired sensing devices for real-life applications. Previous work in neuromorphic engineering mostly considered application-specific designs which is a strong limitation for researchers to develop novel applications and emulate the true behaviour of neuro-inspired systems. Hence to enable the fully parallel brain-like computations, this paper proposes a methodology where a spiking neuron model was emulated in software and electronic circuits were then implemented and characterized. The proposed approach offers a unique perspective whereby experimental measurements taken from a fabricated device allowing empirical models to be developed. This technique acts as a bridge between the theoretical and practical aspects of neuro-inspired devices. It is shown through software simulations and empirical modelling that the proposed technique is capable of replicating neural dynamics and post-synaptic potentials. Retrospectively, the proposed framework offers a first step towards open-source neuro-inspired hardware for a range of applications such as healthcare, applied machine learning and the internet of things (IoT).","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OSPEN: an open source platform for emulating neuromorphic hardware\",\"authors\":\"A. Ghani, T. Dowrick, L. McDaid\",\"doi\":\"10.11591/ijres.v12.i1.pp1-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates a framework that entails a bottom-up approach to accelerate research, development, and verification of neuro-inspired sensing devices for real-life applications. Previous work in neuromorphic engineering mostly considered application-specific designs which is a strong limitation for researchers to develop novel applications and emulate the true behaviour of neuro-inspired systems. Hence to enable the fully parallel brain-like computations, this paper proposes a methodology where a spiking neuron model was emulated in software and electronic circuits were then implemented and characterized. The proposed approach offers a unique perspective whereby experimental measurements taken from a fabricated device allowing empirical models to be developed. This technique acts as a bridge between the theoretical and practical aspects of neuro-inspired devices. It is shown through software simulations and empirical modelling that the proposed technique is capable of replicating neural dynamics and post-synaptic potentials. Retrospectively, the proposed framework offers a first step towards open-source neuro-inspired hardware for a range of applications such as healthcare, applied machine learning and the internet of things (IoT).\",\"PeriodicalId\":158991,\"journal\":{\"name\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijres.v12.i1.pp1-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v12.i1.pp1-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了一个框架,该框架需要自下而上的方法来加速研究,开发和验证现实生活中应用的神经启发传感设备。以前的神经形态工程工作主要考虑特定应用的设计,这严重限制了研究人员开发新的应用和模拟神经启发系统的真实行为。因此,为了实现完全并行的类脑计算,本文提出了一种方法,其中在软件中模拟尖峰神经元模型,然后实现和表征电子电路。所提出的方法提供了一个独特的视角,即从制造设备采取的实验测量,允许开发经验模型。这项技术在神经启发装置的理论和实践方面起着桥梁的作用。通过软件模拟和经验建模表明,所提出的技术能够复制神经动力学和突触后电位。回顾过去,提出的框架为医疗保健、应用机器学习和物联网(IoT)等一系列应用提供了开源神经启发硬件的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OSPEN: an open source platform for emulating neuromorphic hardware
This paper demonstrates a framework that entails a bottom-up approach to accelerate research, development, and verification of neuro-inspired sensing devices for real-life applications. Previous work in neuromorphic engineering mostly considered application-specific designs which is a strong limitation for researchers to develop novel applications and emulate the true behaviour of neuro-inspired systems. Hence to enable the fully parallel brain-like computations, this paper proposes a methodology where a spiking neuron model was emulated in software and electronic circuits were then implemented and characterized. The proposed approach offers a unique perspective whereby experimental measurements taken from a fabricated device allowing empirical models to be developed. This technique acts as a bridge between the theoretical and practical aspects of neuro-inspired devices. It is shown through software simulations and empirical modelling that the proposed technique is capable of replicating neural dynamics and post-synaptic potentials. Retrospectively, the proposed framework offers a first step towards open-source neuro-inspired hardware for a range of applications such as healthcare, applied machine learning and the internet of things (IoT).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信